ﻻ يوجد ملخص باللغة العربية
Probabilistic (p-) bits implemented with low energy barrier nanomagnets (LBMs) have recently gained attention because they can be leveraged to perform some computational tasks very efficiently. Although more error-resilient than Boolean computing, p-bit based computing employing LBMs is, however, not completely immune to defects and device-to-device variations. In some tasks (e.g. binary stochastic neurons for machine learning and p-bits for population coding), extended defects, such as variation of the LBM thickness over a significant fraction of the surface, can impair functionality. In this paper, we have examined if unavoidable geometric device-to-device variations can have a significant effect on one of the most critical requirements for probabilistic computing, namely the ability to program probability with an external agent, such as a spin-polarized current injected into the LBM. We found that the programming ability is fortunately not lost due to reasonable device-to-device variations. The little variation in the probability versus current characteristic that reasonable device variability causes can be suppressed further by increasing the spin polarization of the current. This shows that probabilistic computing with LBMs is robust against small geometric variations, and hence will be scalable to a large number of p-bits.
The desire to perform information processing, computation, communication, signal generation and related tasks, while dissipating as little energy as possible, has inspired many ideas and paradigms. One of the most powerful among them is the notion of
In a two-dimensional arrangement of closely spaced elliptical nanomagnets with in-plane magnetic anisotropy, whose major axes are aligned along columns and minor axes along rows, dipole coupling will make the magnetic ordering ferromagnetic along the
Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irr
Antennas typically have emission/radiation efficiencies bounded by A/(lambda)^2 (A < lambda^2) where A is the emitting area and lambda is the wavelength of the emitted wavelength. That makes it challenging to miniaturize antennas to extreme sub-wavel
In this work, vertical tunnel field-effect transistors (v-TFETs) based on vertically stacked heretojunctions from 2D transition metal dichalcogenide (TMD) materials are studied by atomistic quantum transport simulations. The switching mechanism of v-