ﻻ يوجد ملخص باللغة العربية
Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irradiation is investigated as an effective means to control domain-wall nucleation in Ta/CoFeB/MgO nanostructures. We show that analogously to He+ irradiation, it is not only possible to reduce the perpendicular magnetic anisotropy but also to increase it significantly, enabling new, bidirectional manipulation schemes. First, the irradiation effects are assessed on film level, sketching an overview of the dose-dependent changes in the magnetic energy landscape. Subsequent time-domain nucleation characteristics of irradiated nanostructures reveal substantial increases in the anisotropy fields but surprisingly small effects on the measured energy barriers, indicating shrinking nucleation volumes. Spatial control of the domain wall nucleation point is achieved by employing focused irradiation of pre-irradiated magnets, with the diameter of the introduced circular defect controlling the coercivity. Special attention is given to the nucleation mechanisms, changing from a Stoner-Wohlfarth particles coherent rotation to depinning from an anisotropy gradient. Dynamic micromagnetic simulations and related measurements are used in addition to model and analyze this depinning-dominated magnetization reversal.
We investigate the spin Hall effect in perpendicularly magnetized Ta/Co40Fe40B20/MgO trilayers with Ta underlayers thicker than the spin diffusion length. The crystallographic structures of the Ta layer and Ta/CoFeB interface are examined in detail u
Ta/CoFeB/MgO trilayers with perpendicular magnetic anisotropy are often characterised by vanishing or modest values of interfacial Dzyaloshinskii-Moriya interaction (DMI), which results in purely Bloch or mixed Bloch-Neel domain walls (DWs). Here we
Spin current generated by spin Hall effect in the heavy metal would diffuse up and down to adjacent ferromagnetic layers and exert torque on their magnetization, called spin-orbit torque. Antiferromagnetically coupled trilayers, namely the so-called
The interfacial Dzyaloshinskii-Moriya interaction (DMI) has been shown to stabilize homochiral Neel-type domain walls in thin films with perpendicular magnetic anisotropy and as a result permit them to be propagated by a spin Hall torque. In this stu
We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 degrees C and characterized using x-ray absorption spectroscopy, transmission e