ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Provision of Concurrent Primary Frequency and Local Voltage Control from a BESS Considering Variable Capability Curves: Modelling and Experimental Assessment

327   0   0.0 ( 0 )
 نشر من قبل Zhao Yuan
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a control method for battery energy storage systems (BESSs) to provide concurrent primary frequency and local voltage regulation services. The actual variable active and reactive power capability of the converter, along with the state-of-charge of the BESS, are jointly considered by the optimal operating point calculation process within the real-time operation. The controller optimizes the provision of grid services, considering the measured grid and battery statuses and predicting the battery DC voltage as a function of the current trajectory using a three-time-constant model (TTC). A computationally-efficient algorithm is proposed to solve the formulated optimal control problem. Experimental tests validate the proposed concepts and show the effectiveness of the employed control framework on a commercial utility-scale 720 kVA/560 kWh BESS.



قيم البحث

اقرأ أيضاً

Security is one of the biggest concern in power system operation. Recently, the emerging cyber security threats to operational functions of power systems arouse high public attention, and cybersecurity vulnerability thus become an emerging topic to e valuate compromised operational performance under cyber attack. In this paper, vulnerability of cyber security of load frequency control (LFC) system, which is the key component in energy manage system (EMS), is assessed by exploiting the system response to attacks on LFC variables/parameters. Two types of attacks: 1) injection attack and 2) scale attack are considered for evaluation. Two evaluation criteria reflecting the damage on system stability and power generation are used to quantify system loss under cyber attacks. Through a sensitivity-based method and attack tree models, the vulnerability of different LFC components is ranked. In addition, a post-intrusion cyber attack detection scheme is proposed. Classification-based schemes using typical classification algorithms are studied and compared to identify different attack scenarios.
Frequency response and voltage support are vital ancillary services for power grids. In this paper, we design and experimentally validate a real-time control framework for battery energy storage systems (BESSs) to provide ancillary services to power grids. The objective of the control system is to utilize the full capability of the BESSs to provide ancillary services. We take the voltage-dependent capability curve of the DC-AC converter and the security requirements of BESSs as constraints of the control system. The initial power set-points are obtained based on the droop control approach. To guarantee the feasibility of the power set-points with respect to both the converter capability and BESS security constraints, the final power set-points calculation is formulated as a nonconvex optimization problem. A convex and computationally efficient reformulation of the original control problem is then proposed. We prove that the proposed convex optimization gives the global optimal solution to the original nonconvex problem. We improve the computational performance of this algorithm by discretizing the feasible region of the optimization model. We achieve a 100 ms update time of the controller setpoint computation in the experimental validation of the utility-scale 720 kVA / 560 kWh BESS on the EPFL campus.
The ongoing energy transition challenges the stability of the electrical power system. Stable operation of the electrical power grid requires both the voltage (amplitude) and the frequency to stay within operational bounds. While much research has fo cused on frequency dynamics and stability, the voltage dynamics has been neglected. Here, we study frequency and voltage stability in the case of the simplest network (two nodes) and an extended all-to-all network via linear stability and bulk analysis. In particular, our linear stability analysis of the network shows that the frequency secondary control guarantees the stability of a particular electric network. Even more interesting, while we only consider secondary frequency control, we observe a stabilizing effect on the voltage dynamics, especially in our numerical bulk analysis.
The capability to switch between grid-connected and islanded modes has promoted adoption of microgrid technology for powering remote locations. Stabilizing frequency during the islanding event, however, is a challenging control task, particularly und er high penetration of converter-interfaced sources. In this paper, a numerical optimal control (NOC)-based control synthesis methodology is proposed for preparedness of microgrid islanding that ensure guaranteed performance. The key feature of the proposed paradigm is near real-time centralized scheduling for real-time decentralized executing. For tractable computation, linearized models are used in the problem formulation. To accommodate the linearization errors, interval analysis is employed to compute linearization-induced uncertainty as numerical intervals so that the NOC problem can be formulated into a robust mixed-integer linear program. The proposed control is verified on the full nonlinear model in Simulink. The simulation results shown effectiveness of the proposed control paradigm and the necessity of considering linearization-induced uncertainty.
126 - Gen Li , Zhen Yang , Yiyong Pan 2021
This paper aims to investigate the characteristics of durations of discretionary lane changes (LCs) on freeways based on an enriched dataset containing LC vehicle trajectories of 2905 passenger cars and 433 heavy vehicles. A comprehensive analysis of LC duration is conducted and four stochastic LC duration models are built according to vehicle types and LC directions. It is found that the LC duration varies across different vehicle types and LC directions. The modelling results show that different variables have different effects on LC duration for different vehicle types and LC directions. Fixed-parameter, latent class, and random parameter accelerated hazard time (AFT) models were built considering driver heterogeneity. Results show that heavy vehicle drivers show more heterogeneity. Different variables were found for different vehicle types and LC directions. The results of this study can be beneficial to understand the mechanism of LC process and the influence of LC on traffic flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا