ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint multi-contrast Variational Network reconstruction (jVN) with application to rapid 2D and 3D imaging

63   0   0.0 ( 0 )
 نشر من قبل Daniel Polak
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: To improve the image quality of highly accelerated multi-channel MRI data by learning a joint variational network that reconstructs multiple clinical contrasts jointly. Methods: Data from our multi-contrast acquisition was embedded into the variational network architecture where shared anatomical information is exchanged by mixing the input contrasts. Complementary k-space sampling across imaging contrasts and Bunch-Phase/Wave-Encoding were used for data acquisition to improve the reconstruction at high accelerations. At 3T, our joint variational network approach across T1w, T2w and T2-FLAIR-weighted brain scans was tested for retrospective under-sampling at R=6 (2D) and R=4x4 (3D) acceleration. Prospective acceleration was also performed for 3D data where the combined acquisition time for whole brain coverage at 1 mm isotropic resolution across three contrasts was less than three minutes. Results: Across all test datasets, our joint multi-contrast network better preserved fine anatomical details with reduced image-blurring when compared to the corresponding single-contrast reconstructions. Improvement in image quality was also obtained through complementary k-space sampling and Bunch-Phase/Wave-Encoding where the synergistic combination yielded the overall best performance as evidenced by exemplarily slices and quantitative error metrics. Conclusion: By leveraging shared anatomical structures across the jointly reconstructed scans, our joint multi-contrast approach learnt more efficient regularizers which helped to retain natural image appearance and avoid over-smoothing. When synergistically combined with advanced encoding techniques, the performance was further improved, enabling up to R=16-fold acceleration with good image quality. This should help pave the way to very rapid high-resolution brain exams.



قيم البحث

اقرأ أيضاً

248 - Ke Wang , Enhao Gong , Yuxin Zhang 2021
Multi-contrast Magnetic Resonance Imaging (MRI) acquisitions from a single scan have tremendous potential to streamline exams and reduce imaging time. However, maintaining clinically feasible scan time necessitates significant undersampling, pushing the limits on compressed sensing and other low-dimensional techniques. During MRI scanning, one of the possible solutions is by using undersampling designs which can effectively improve the acquisition and achieve higher reconstruction accuracy. However, existing undersampling optimization methods are time-consuming and the limited performance prevents their clinical applications. In this paper, we proposed an improved undersampling trajectory optimization scheme to generate an optimized trajectory within seconds and apply it to subsequent multi-contrast MRI datasets on a per-subject basis, where we named it OUTCOMES. By using a data-driven method combined with improved algorithm design, GPU acceleration, and more efficient computation, the proposed method can optimize a trajectory within 5-10 seconds and achieve 30%-50% reconstruction improvement with the same acquisition cost, which makes real-time under-sampling optimization possible for clinical applications.
Compressed sensing takes advantage of low-dimensional signal structure to reduce sampling requirements far below the Nyquist rate. In magnetic resonance imaging (MRI), this often takes the form of sparsity through wavelet transform, finite difference s, and low rank extensions. Though powerful, these image priors are phenomenological in nature and do not account for the mechanism behind the image formation. On the other hand, MRI signal dynamics are governed by physical laws, which can be explicitly modeled and used as priors for reconstruction. {1}These explicit and implicit signal priors can be synergistically combined in an inverse problem framework to recover sharp, multi-contrast images from highly accelerated scans. Furthermore, the physics-based constraints provide a recipe for recovering quantitative, bio-physical parameters from the data. This article introduces physics-based modeling constraints in MRI and shows how they can be used in conjunction with compressed sensing for image reconstruction and quantitative imaging. We describe model-based quantitative MRI, as well as its linear subspace approximation. We also discuss approaches to selecting user-controllable scan parameters given knowledge of the physical model. We present several MRI applications that take advantage of this framework for the purpose of multi-contrast imaging and quantitative mapping.
We propose a new joint image reconstruction method by recovering edge directly from observed data. More specifically, we reformulate joint image reconstruction with vectorial total-variation regularization as an $l_1$ minimization problem of the Jaco bian of the underlying multi-modality or multi-contrast images. Derivation of data fidelity for Jacobian and transformation of noise distribution are also detailed. The new minimization problem yields an optimal $O(1/k^2)$ convergence rate, where $k$ is the iteration number, and the per-iteration cost is low thanks to the close-form matrix-valued shrinkage. We conducted numerical tests on a number multi-contrast magnetic resonance image (MRI) datasets, which show that the proposed method significantly improves reconstruction efficiency and accuracy compared to the state-of-the-arts.
Electron microscopy has shown to be a very powerful tool to map the chemical nature of samples at various scales down to atomic resolution. However, many samples can not be analyzed with an acceptable signal-to-noise ratio because of the radiation da mage induced by the electron beam. This is particularly crucial for electron energy loss spectroscopy (EELS) which acquires spectral-spatial data and requires high beam intensity. Since scanning transmission electron microscopes (STEM) are able to acquire data cubes by scanning the electron probe over the sample and recording a spectrum for each spatial position, it is possible to design the scan pattern and to sample only specific pixels. As a consequence, partial acquisition schemes are now conceivable, provided a reconstruction of the full data cube is conducted as a post-processing step. This paper proposes two reconstruction algorithms for multi-band images acquired by STEM-EELS which exploits the spectral structure and the spatial smoothness of the image. The performance of the proposed schemes is illustrated thanks to experiments conducted on a realistic phantom dataset as well as real EELS spectrum-images.
Low-dose computed tomography (LDCT) scans, which can effectively alleviate the radiation problem, will degrade the imaging quality. In this paper, we propose a novel LDCT reconstruction network that unrolls the iterative scheme and performs in both i mage and manifold spaces. Because patch manifolds of medical images have low-dimensional structures, we can build graphs from the manifolds. Then, we simultaneously leverage the spatial convolution to extract the local pixel-level features from the images and incorporate the graph convolution to analyze the nonlocal topological features in manifold space. The experiments show that our proposed method outperforms both the quantitative and qualitative aspects of state-of-the-art methods. In addition, aided by a projection loss component, our proposed method also demonstrates superior performance for semi-supervised learning. The network can remove most noise while maintaining the details of only 10% (40 slices) of the training data labeled.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا