ترغب بنشر مسار تعليمي؟ اضغط هنا

MAGIC: Manifold and Graph Integrative Convolutional Network for Low-Dose CT Reconstruction

119   0   0.0 ( 0 )
 نشر من قبل Yi Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-dose computed tomography (LDCT) scans, which can effectively alleviate the radiation problem, will degrade the imaging quality. In this paper, we propose a novel LDCT reconstruction network that unrolls the iterative scheme and performs in both image and manifold spaces. Because patch manifolds of medical images have low-dimensional structures, we can build graphs from the manifolds. Then, we simultaneously leverage the spatial convolution to extract the local pixel-level features from the images and incorporate the graph convolution to analyze the nonlocal topological features in manifold space. The experiments show that our proposed method outperforms both the quantitative and qualitative aspects of state-of-the-art methods. In addition, aided by a projection loss component, our proposed method also demonstrates superior performance for semi-supervised learning. The network can remove most noise while maintaining the details of only 10% (40 slices) of the training data labeled.



قيم البحث

اقرأ أيضاً

354 - Siqi Ye , Yong Long , Il Yong Chun 2020
This paper applies the recent fast iterative neural network framework, Momentum-Net, using appropriate models to low-dose X-ray computed tomography (LDCT) image reconstruction. At each layer of the proposed Momentum-Net, the model-based image reconst ruction module solves the majorized penalized weighted least-square problem, and the image refining module uses a four-layer convolutional neural network (CNN). Experimental results with the NIH AAPM-Mayo Clinic Low Dose CT Grand Challenge dataset show that the proposed Momentum-Net architecture significantly improves image reconstruction accuracy, compared to a state-of-the-art noniterative image denoising deep neural network (NN), WavResNet (in LDCT). We also investigated the spectral normalization technique that applies to image refining NN learning to satisfy the nonexpansive NN property; however, experimental results show that this does not improve the image reconstruction performance of Momentum-Net.
By the ALARA (As Low As Reasonably Achievable) principle, ultra-low-dose CT reconstruction is a holy grail to minimize cancer risks and genetic damages, especially for children. With the development of medical CT technologies, the iterative algorithm s are widely used to reconstruct decent CT images from a low-dose scan. Recently, artificial intelligence (AI) techniques have shown a great promise in further reducing CT radiation dose to the next level. In this paper, we demonstrate that AI-powered CT reconstruction offers diagnostic image quality at an ultra-low-dose level comparable to that of radiography. Specifically, here we develop a Split Unrolled Grid-like Alternative Reconstruction (SUGAR) network, in which deep learning, physical modeling and image prior are integrated. The reconstruction results from clinical datasets show that excellent images can be reconstructed using SUGAR from 36 projections. This approach has a potential to change future healthcare.
X-ray Computed Tomography (CT) is an important tool in medical imaging to obtain a direct visualization of patient anatomy. However, the x-ray radiation exposure leads to the concern of lifetime cancer risk. Low-dose CT scan can reduce the radiation exposure to patient while the image quality is usually degraded due to the appearance of noise and artifacts. Numerous studies have been conducted to regularize CT image for better image quality. Yet, exploring the underlying manifold where real CT images residing on is still an open problem. In this paper, we propose a fully data-driven manifold learning approach by incorporating the emerging deep-learning technology. An encoder-decoder convolutional neural network has been established to map a CT image to the inherent low-dimensional manifold, as well as to restore the CT image from its corresponding manifold representation. A novel reconstruction algorithm assisted by the leant manifold prior has been developed to achieve high quality low-dose CT reconstruction. In order to demonstrate the effectiveness of the proposed framework, network training, testing, and comprehensive simulation study have been performed using patient abdomen CT images. The trained encoder-decoder CNN is capable of restoring high-quality CT images with average error of ~20 HU. Furthermore, the proposed manifold prior assisted reconstruction scheme achieves high-quality low-dose CT reconstruction, with average reconstruction error of < 30 HU, more than five times and two times lower than that of filtered back projection method and total-variation based iterative reconstruction method, respectively.
We propose a provably convergent method, called Efficient Learned Descent Algorithm (ELDA), for low-dose CT (LDCT) reconstruction. ELDA is a highly interpretable neural network architecture with learned parameters and meanwhile retains convergence gu arantee as classical optimization algorithms. To improve reconstruction quality, the proposed ELDA also employs a new non-local feature mapping and an associated regularizer. We compare ELDA with several state-of-the-art deep image methods, such as RED-CNN and Learned Primal-Dual, on a set of LDCT reconstruction problems. Numerical experiments demonstrate improvement of reconstruction quality using ELDA with merely 19 layers, suggesting the promising performance of ELDA in solution accuracy and parameter efficiency.
Computed tomography (CT) has played a vital role in medical diagnosis, assessment, and therapy planning, etc. In clinical practice, concerns about the increase of X-ray radiation exposure attract more and more attention. To lower the X-ray radiation, low-dose CT is often used in certain scenarios, while it will induce the degradation of CT image quality. In this paper, we proposed a training method that trained denoising neural networks without any paired clean data. we trained the denoising neural network to map one noise LDCT image to its two adjacent LDCT images in a singe 3D thin-layer low-dose CT scanning, simultaneously In other words, with some latent assumptions, we proposed an unsupervised loss function with the integration of the similarity between adjacent CT slices in 3D thin-layer lowdose CT to train the denoising neural network in an unsupervised manner. For 3D thin-slice CT scanning, the proposed virtual supervised loss function was equivalent to a supervised loss function with paired noisy and clean samples when the noise in the different slices from a single scan was uncorrelated and zero-mean. Further experiments on Mayo LDCT dataset and a realistic pig head were carried out and demonstrated superior performance over existing unsupervised methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا