ﻻ يوجد ملخص باللغة العربية
We prove that solution of defocusing semilinear wave equation in $mathbb{R}^{1+3}$ with pure power nonlinearity is uniformly bounded for all $frac{3}{2}<pleq 2$ with sufficiently smooth and localized data. The result relies on the $r$-weighted energy estimate originally introduced by Dafermos and Rodnianski. This appears to be the first result regarding the global asymptotic property for the solution with small power $p$ under 2.
In this paper, we use Dafermos-Rodnianskis new vector field method to study the asymptotic pointwise decay properties for solutions of energy subcritical defocusing semilinear wave equations in $mathbb{R}^{1+3}$. We prove that the solution decays as
This paper is devoted to the study of asymptotic behaviors of solutions to the one-dimensional defocusing semilinear wave equation. We prove that finite energy solution tends to zero in the pointwise sense, hence improving the averaged decay of Lindb
In this paper, we study the asymptotic decay properties for defocusing semilinear wave equations in $mathbb{R}^{1+2}$ with pure power nonlinearity. By applying new vector fields to null hyperplane, we derive improved time decay of the potential energ
The paper gives a comprehensive study of infinite-energy solutions and their long-time behavior for semi-linear weakly damped wave equations in $mathbb{R}^3$ with quintic nonlinearities. This study includes global well-posedness of the so-called Shat
We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well-known that: - For $n=2$, there exist Morse index $1$ solutions whose $L^infty$ norm goes to infinity. - For $n geq 3$, unif