ﻻ يوجد ملخص باللغة العربية
The problem of (vertex) $(Delta+1)$-coloring a graph of maximum degree $Delta$ has been extremely well-studied over the years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until recently. In SODA18, Bhattacharya, Chakrabarty, Henzinger and Nanongkai devised a randomized data structure for maintaining a $(Delta+1)$-coloring with $O(log Delta)$ expected amortized update time. In this paper, we present a $(Delta+1)$-coloring data structure that achieves a constant amortized update time and show that this time bound holds not only in expectation but also with high probability.
In fully dynamic graphs, we know how to maintain a 2-approximation of maximum matching extremely fast, that is, in polylogarithmic update time or better. In a sharp contrast and despite extensive studies, all known algorithms that maintain a $2-Omega
We present the first algorithm for maintaining a maximal independent set (MIS) of a fully dynamic graph---which undergoes both edge insertions and deletions---in polylogarithmic time. Our algorithm is randomized and, per update, takes $O(log^2 Delta
A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA19] states that in every $n$-vertex graph $G$ with maximum degree $Delta$, sampling $O(log{n})$ colors per each vertex independently from $Delta+1$ colors almost certainly allow
We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection,
We present a randomized distributed algorithm that computes a $Delta$-coloring in any non-complete graph with maximum degree $Delta geq 4$ in $O(log Delta) + 2^{O(sqrt{loglog n})}$ rounds, as well as a randomized algorithm that computes a $Delta$-col