ﻻ يوجد ملخص باللغة العربية
We present the first algorithm for maintaining a maximal independent set (MIS) of a fully dynamic graph---which undergoes both edge insertions and deletions---in polylogarithmic time. Our algorithm is randomized and, per update, takes $O(log^2 Delta cdot log^2 n)$ expected time. Furthermore, the algorithm can be adjusted to have $O(log^2 Delta cdot log^4 n)$ worst-case update-time with high probability. Here, $n$ denotes the number of vertices and $Delta$ is the maximum degree in the graph. The MIS problem in fully dynamic graphs has attracted significant attention after a breakthrough result of Assadi, Onak, Schieber, and Solomon [STOC18] who presented an algorithm with $O(m^{3/4})$ update-time (and thus broke the natural $Omega(m)$ barrier) where $m$ denotes the number of edges in the graph. This result was improved in a series of subsequent papers, though, the update-time remained polynomial. In particular, the fastest algorithm prior to our work had $widetilde{O}(min{sqrt{n}, m^{1/3}})$ update-time [Assadi et al. SODA19]. Our algorithm maintains the lexicographically first MIS over a random order of the vertices. As a result, the same algorithm also maintains a 3-approximation of correlation clustering. We also show that a simpler variant of our algorithm can be used to maintain a random-order lexicographically first maximal matching in the same update-time.
Maintaining maximal independent set in dynamic graph is a fundamental open problem in graph theory and the first sublinear time deterministic algorithm was came up by Assadi, Onak, Schieber and Solomon(STOC18), which achieves $O(m^{3/4})$ amortized u
The problem of (vertex) $(Delta+1)$-coloring a graph of maximum degree $Delta$ has been extremely well-studied over the years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until recently. In SODA18, B
Maximal independent set (MIS), maximal matching (MM), and $(Delta+1)$-coloring in graphs of maximum degree $Delta$ are among the most prominent algorithmic graph theory problems. They are all solvable by a simple linear-time greedy algorithm and up u
In the dynamic minimum set cover problem, a challenge is to minimize the update time while guaranteeing close to the optimal $min(O(log n), f)$ approximation factor. (Throughout, $m$, $n$, $f$, and $C$ are parameters denoting the maximum number of se
We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned $d$-dimensional hypercubes. It