ﻻ يوجد ملخص باللغة العربية
We discuss recent developments in measurement protocols that generate quantum entanglement between two remote qubits, focusing on the theory of joint continuous detection of their spontaneous emission. We consider a device geometry similar to that used in well-known Bell-state measurements, which we analyze using a conceptually transparent model of stochastic quantum trajectories; we use this to review photodetection, the most straightforward case, and then generalize to the diffusive trajectories from homodyne and heterodyne detection as well. Such quadrature measurement schemes are a realistic two-qubit extension of existing circuit-QED experiments which obtain quantum trajectories by homodyning or heterodyning a superconducting qubits spontaneous emission, or an adaptation of existing optical measurement schemes to obtain jump trajectories from emitters. We mention key results, presented from within a single theoretical framework, and draw connections to concepts in the wider literature on entanglement generation by measurement (such as path information erasure and entanglement swapping). The photon which-path information acquisition, and therefore the two-qubit entanglement yield, is tunable under the homodyne detection scheme we discuss, at best generating equivalent average entanglement dynamics as in the comparable photodetection case. In addition to deriving this known equivalence, we extend past analyses in our characterization of the measurement dynamics: We include derivations of bounds on the fastest possible evolution towards a Bell state under joint homodyne measurement dynamics, and characterize the maximal entanglement yield possible using inefficient (lossy) measurements.
We review the continuous monitoring of a qubit through its spontaneous emission, at an introductory level. Contemporary experiments have been able to collect the fluorescence of an artificial atom in a cavity and transmission line, and then make meas
Solid-state quantum emitters are promising candidates for the realization of quantum networks, owing to their long-lived spin memories, high-fidelity local operations, and optical connectivity for long-range entanglement. However, due to differences
The unambiguous detection and quantification of entanglement is a hot topic of scientific research, though it is limited to low dimensions or specific classes of states. Here we identify an additional class of quantum states, for which bipartite enta
We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gaug
Based on the mutually unbiased bases, the mutually unbiased measurements and the general symmetric informationally complete positive-operator-valued measures, we propose three separability criteria for $d$-dimensional bipartite quantum systems, which