ﻻ يوجد ملخص باللغة العربية
Based on the mutually unbiased bases, the mutually unbiased measurements and the general symmetric informationally complete positive-operator-valued measures, we propose three separability criteria for $d$-dimensional bipartite quantum systems, which are more powerful than the corresponding ones introduced in [C. Spengler, M. Huber, S. Brierley, T. Adaktylos, and B.C. Hiesmayr, Phys. Rev. A textbf{86}, 022311 (2012); B. Chen, T. Ma, and S.M. Fei, Phys. Rev. A textbf{89}, 064302 (2014); B. Chen, T. Li, and S.M. Fei, arXiv:1406.7820v1 [quant-ph] (2014)]. Some states such as Werner states and Bell-diagonal states are used to further illustrate the efficiency of the presented criteria.
The entanglement detection via local measurements can be experimentally implemented. Based on mutually unbiased measurements and general symmetric informationally complete positive-operator-valued measures, we present separability criteria for bipart
Entanglement is the key feature of many-body quantum systems, and the development of new tools to probe it in the laboratory is an outstanding challenge. Measuring the entropy of different partitions of a quantum system provides a way to probe its en
We present a physical setup with which it is possible to produce arbitrary symmetric long-lived multiqubit entangled states in the internal ground levels of photon emitters, including the paradigmatic GHZ and W states. In the case of three emitters,
Coherence and entanglement are fundamental properties of quantum systems, promising to power the near future quantum computers, sensors and simulators. Yet, their experimental detection is challenging, usually requiring full reconstruction of the sys
We introduce and study a class of entanglement criteria based on the idea of applying local contractions to an input multipartite state, and then computing the projective tensor norm of the output. More precisely, we apply to a mixed quantum state a