ترغب بنشر مسار تعليمي؟ اضغط هنا

Unifying Lattice Models, Links and Quantum Geometric Langlands via Branes in String Theory

107   0   0.0 ( 0 )
 نشر من قبل Meer Ashwinkumar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explain how, starting with a stack of D4-branes ending on an NS5-brane in type IIA string theory, one can, via T-duality and the topological-holomorphic nature of the relevant worldvolume theories, relate (i) the lattice models realized by Costellos 4d Chern-Simons theory, (ii) links in 3d analytically-continued Chern-Simons theory, (iii) the quantum geometric Langlands correspondence realized by Kapustin-Witten using 4d N = 4 gauge theory and its quantum group modification, and (iv) the Gaitsgory-Lurie conjecture relating quantum groups/affine Kac-Moody algebras to Whittaker D-modules/W-algebras. This furnishes, purely physically via branes in string theory, a novel bridge between the mathematics of integrable systems, geometric topology, geometric representation theory, and quantum algebras.



قيم البحث

اقرأ أيضاً

We elucidate how integrable lattice models described by Costellos 4d Chern-Simons theory can be realized via a stack of D4-branes ending on an NS5-brane in type IIA string theory, with D0-branes on the D4-brane worldvolume sourcing a meromorphic RR 1 -form, and fundamental strings forming the lattice. This provides us with a nonperturbative integration cycle for the 4d Chern-Simons theory, and by applying T- and S-duality, we show how the R-matrix, the Yang-Baxter equation and the Yangian can be categorified, that is, obtained via the Hilbert space of a 6d gauge theory.
We show that the partition function of all classical spin models, including all discrete Standard Statistical Models and all abelian discrete Lattice Gauge Theories (LGTs), can be expressed as a special instance of the partition function of the 4D Z_ 2 LGT. In this way, all classical spin models with apparently very different features are unified in a single complete model, and a physical relation between all models is established. As applications of this result, we present a new method to do mean field theory for abelian discrete LGTs with d>3, and we show that the computation of the partition function of the 4D Z_2 LGT is a computationally hard (#P-hard) problem. We also extend our results to abelian continuous models, where we show the approximate completeness of the 4D Z_2 LGT. All results are proven using quantum information techniques.
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent mass es and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the $c=1$ Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.
394 - M. Frau , L. Gallot , A.Lerda 2000
We review the boundary state description of D-branes in type I string theory and show that the only stable non-BPS configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS D-partic les and compare them with the interactions of the dual non-BPS states of the heterotic string, finding complete agreement.
When studying quantum field theories and lattice models, it is often useful to analytically continue the number of field or spin components from an integer to a real number. In spite of this, the precise meaning of such analytic continuations has nev er been fully clarified, and in particular the symmetry of these theories is obscure. We clarify these issues using Deligne categories and their associated Brauer algebras, and show that these provide logically satisfactory answers to these questions. Simple objects of the Deligne category generalize the notion of an irreducible representations, avoiding the need for such mathematically nonsensical notions as vector spaces of non-integer dimension. We develop a systematic theory of categorical symmetries, applying it in both perturbative and non-perturbative contexts. A partial list of our results is: categorical symmetries are preserved under RG flows; continuous categorical symmetries come equipped with conserved currents; CFTs with categorical symmetries are necessarily non-unitary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا