ترغب بنشر مسار تعليمي؟ اضغط هنا

Mining for Candidates of Galactic Stellar-mass Black Hole Binaries with LAMOST

61   0   0.0 ( 0 )
 نشر من قبل Wei-Min Gu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the prospects of searching for black hole (BH) binary systems with a stellar-mass BH and a non-compact visible companion, by utilizing the spectroscopic data of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We simulate the Galactic BH binary population and determine its optical visibility by considering the stellar synthetic population model and the distributions of binary orbital parameters. By convolving the visibility of BH binaries with the LAMOST detection sensitivity, we predict that $gtrsim$ 400 candidate BH binaries can be found by the low-resolution, non-time-domain survey, and $sim$ 50-350 candidates by the LAMOST ongoing medium-resolution, time-domain spectroscopic survey. Most of the candidates are short-period (0.2-2 days) binaries with M-, K-, G-, or F-type companions, in which $sim$ 47% have a mass function (the lower limit of the BH mass) larger than 3 $M_{odot}$. By complementing the LAMOST spectroscopic data with other photometric/spectroscopic surveys or follow-up observations, these candidates could be confirmed. Therefore, by exploring the LAMOST data, we can enlarge the sample of dynamically confirmed BH binaries significantly, which can improve our understanding of the mass distribution of BHs and the stellar evolution model.



قيم البحث

اقرأ أيضاً

We propose a method to search for stellar-mass black hole (BH) candidates with giant companions from spectroscopic observations. Based on the stellar spectra of LAMOST Data Release 6, we obtain a sample of seven giants in binaries with large radial v elocity variation $Delta V_R > 80~{rm km~s^{-1}}$. With the effective temperature, surface gravity, and metallicity provided by LAMOST, and the parallax given by {it Gaia}, we can estimate the mass and radius of the giant, and therefore evaluate the possible mass of the optically invisible star in the binary. We show that the sources in our sample are potential BH candidates, and are worthy of dynamical measurement by further spectroscopic observations. Our method may be particularly valid for the selection of BH candidates in binaries with unknown orbital periods.
Most dynamically confirmed stellar-mass black holes and the candidates were originally selected from X-ray outbursts. In the present work, we search for black hole candidates in the LAMOST survey by using the spectra along with photometry from the AS AS-SN survey, where the orbital period of the binary may be revealed by the periodic light curve, such as the ellipsoidal modulation type. Our sample consists of 9 binaries, where each source contains a giant star with large radial velocity variation ($Delta V_{rm R} > 70~{rm km~s^{-1}}$) and periods known from light curves. We focus on the 9 sources with long periods ($T_{rm ph} > 5$ days) and evaluate the mass $M_2$ of the optically invisible companion. Since the observed $Delta V_{rm R}$ from only a few repeating spectroscopic observations is a lower limit of the real amplitude, the real mass $M_2$ can be significantly higher than the current evaluation. It is likely an efficient method to place constraints on $M_2$ by combining $Delta V_{rm R}$ from LAMOST and $T_{rm ph}$ from ASAS-SN, particularly by the ongoing LAMOST Medium Resolution Survey.
We present a Bayesian parameter-estimation pipeline to measure the properties of inspiralling stellar-mass black hole binaries with LISA. Our strategy (i) is based on the coherent analysis of the three noise-orthogonal LISA data streams, (ii) employs accurate and computationally efficient post-Newtonian waveforms accounting for both spin-precession and orbital eccentricity, and (iii) relies on a nested sampling algorithm for the computation of model evidences and posterior probability density functions of the full 17 parameters describing a binary. We demonstrate the performance of this approach by analyzing the LISA Data Challenge (LDC-1) dataset, consisting of 66 quasi-circular, spin-aligned binaries with signal-to-noise ratios ranging from 3 to 14 and times to merger ranging from 3000 to 2 years. We recover 22 binaries with signal-to-noise ratio higher than 8. Their chirp masses are typically measured to better than $0.02 M_odot$ at $90%$ confidence, while the sky-location accuracy ranges from 1 to 100 square degrees. The mass ratio and the spin parameters can only be constrained for sources that merge during the mission lifetime. In addition, we report on the successful recovery of an eccentric, spin-precessing source at signal-to-noise ratio 15 for which we can measure an eccentricity of $3times 10^{-3}$.
Main sequence turn-off (MSTO) stars have advantages as indicators of Galactic evolution since their ages could be robustly estimated from atmospheric parameters. Hundreds of thousands of MSTO stars have been selected from the LAMOST Galactic sur- vey to study the evolution of the Galaxy, and it is vital to derive accurate stellar parameters. In this work, we select 150 MSTO star candidates from the MSTO stars sample of Xiang that have asteroseismic parameters and determine accurate stellar parameters for these stars combing the asteroseismic parameters deduced from the Kepler photometry and atmospheric parameters deduced from the LAMOST spectra.With this sample, we examine the age deter- mination as well as the contamination rate of the MSTO stars sample. A comparison of age between this work and Xiang shows a mean difference of 0.53 Gyr (7%) and a dispersion of 2.71 Gyr (28%). The results show that 79 of the candidates are MSTO stars, while the others are contaminations from either main sequence or sub-giant stars. The contamination rate for the oldest stars is much higher than that for the younger stars. The main cause for the high contamination rate is found to be the relatively large systematic bias in the LAMOST surface gravity estimates.
Recent discoveries of black hole (BH) candidates in Galactic and extragalactic globular clusters (GCs) have ignited interest in understanding how BHs dynamically evolve in a GC and the number of BHs ($N_{rm{BH}}$) that may still be retained by todays GCs. Numerical models show that even if stellar-mass BHs are retained in todays GCs, they are typically in configurations that are not directly detectable. We show that a suitably defined measure of mass segregation ($Delta$) between, e.g., giants and low-mass main-sequence stars, can be an effective probe to indirectly estimate $N_{rm{BH}}$ in a GC aided by calibrations from numerical models. Using numerical models including all relevant physics we first show that $N_{rm{BH}}$ is strongly anticorrelated with $Delta$ between giant stars and low-mass main-sequence stars. We apply the distributions of $Delta$ vs $N_{rm{BH}}$ obtained from models to three Milky Way GCs to predict the $N_{rm{BH}}$ retained by them at present. We calculate $Delta$ using the publicly available ACS survey data for 47 Tuc, M 10, and M 22, all with identified stellar-mass BH candidates. Using these measured $Delta$ and distributions of $Delta$ vs $N_{rm{BH}}$ from models as calibration we predict distributions for $N_{rm{BH}}$ expected to be retained in these GCs. For 47 Tuc, M 10, and M 22 our predicted distributions peak at $N_{rm{BH}}approx20$, $24$, and $50$, whereas, within the $2sigma$ confidence level, $N_{rm{BH}}$ can be up to $sim150$, $50$, and $200$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا