ﻻ يوجد ملخص باللغة العربية
We propose a method to search for stellar-mass black hole (BH) candidates with giant companions from spectroscopic observations. Based on the stellar spectra of LAMOST Data Release 6, we obtain a sample of seven giants in binaries with large radial velocity variation $Delta V_R > 80~{rm km~s^{-1}}$. With the effective temperature, surface gravity, and metallicity provided by LAMOST, and the parallax given by {it Gaia}, we can estimate the mass and radius of the giant, and therefore evaluate the possible mass of the optically invisible star in the binary. We show that the sources in our sample are potential BH candidates, and are worthy of dynamical measurement by further spectroscopic observations. Our method may be particularly valid for the selection of BH candidates in binaries with unknown orbital periods.
We study the prospects of searching for black hole (BH) binary systems with a stellar-mass BH and a non-compact visible companion, by utilizing the spectroscopic data of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We simulate
Most dynamically confirmed stellar-mass black holes and the candidates were originally selected from X-ray outbursts. In the present work, we search for black hole candidates in the LAMOST survey by using the spectra along with photometry from the AS
We present results from an ongoing multiwavelength radial velocity (RV) survey of the Taurus-Auriga star forming region as part of our effort to identify pre--main sequence giant planet hosts. These 1-3 Myr old T Tauri stars present significant chall
Main sequence turn-off (MSTO) stars have advantages as indicators of Galactic evolution since their ages could be robustly estimated from atmospheric parameters. Hundreds of thousands of MSTO stars have been selected from the LAMOST Galactic sur- vey
The LAMOST Medium-Resolution Spectroscopic Survey (LAMOST-MRS) provides an unprecedented opportunity for detecting multi-line spectroscopic systems. Based on the method of Cross-Correlation Function (CCF) and successive derivatives, we search for spe