ترغب بنشر مسار تعليمي؟ اضغط هنا

Parsec-scale Dusty Winds in Active Galactic Nuclei: Evidence for Radiation Pressure Driving

67   0   0.0 ( 0 )
 نشر من قبل James Leftley
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared interferometry of local AGN has revealed a warm (~300K-400K) polar dust structure that cannot be trivially explained by the putative dust torus of the unified model. This led to the development of the disk+wind scenario which comprises of a hot (~1000K) compact equatorial dust disk and a polar dust wind. This wind is assumed to be driven by radiation pressure and, therefore, we would expect that long term variation in radiation pressure would influence the dust distribution. In this paper we attempt to quantify if and how the dust distribution changes with radiation pressure. We analyse so far unpublished VLTI/MIDI data on 8 AGN and use previous results on 25 more to create a sample of 33 AGN. This sample comprises all AGN successfully observed with VLTI/MIDI. For each AGN, we calculate the Eddington ratio, using the intrinsic 2-10keV X-ray luminosity and black hole mass, and compare this to the resolved dust emission fraction as seen by MIDI. We tentatively conclude that there is more dust in the wind at higher Eddington ratios, at least in type 2 AGN where such an effect is expected to be more easily visible.



قيم البحث

اقرأ أيضاً

This letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGN). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGN, spatially resolved obser vations indicate that the majority of the IR emission from 100 pc in many AGN originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGN consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g. the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3-5{mu}m bump observed in many type 1 AGN unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGN at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scaled dusty medium around AGN: the disk gives rise to the 3-5{mu}m near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.
185 - Y.Y. Kovalev 2016
The data release 1 (DR1) of milliarcsecond-scale accurate optical positions of stars and galaxies was recently published by the space mission Gaia. We study the offsets of highly accurate absolute radio (very long baseline interferometry, VLBI) and o ptical positions of active galactic nuclei (AGN) to see whether or not a signature of wavelength-dependent parsec-scale structure can be seen. We analyzed VLBI and Gaia positions and determined the direction of jets in 2957 AGNs from their VLBI images. We find that there is a statistically significant excess of sources with VLBI-to-Gaia position offset in directions along and opposite to the jet. Offsets along the jet vary from zero to tens of mas. Offsets in the opposite direction do not exceed 3 mas. The presense of strong, extended parsec-scale optical jet structures in many AGNs is required to explain all observed VLBI-Gaia offsets along the jet direction. The offsets in the opposite direction shorter than 1 mas can be explained either by a non-point-like VLBI jet structure or a core-shift effect due to synchrotron opacity.
The apparent position of jet base (core) in radio-loud active galactic nuclei changes with frequency because of synchrotron self-absorption. Studying this `core shift` effect enables us to reconstruct properties of the jet regions close to the centra l engine. We report here results from core shift measurements in AGNs observed with global VLBI at 2 and 8 GHz at epochs from 1994 to 2016. Our sample contains 40 objects observed at least 10 times during that period. The core shift is determined using a new automatic procedure introduced to minimize possible biases. The resulting multiple epoch measurements of the core position are employed for examining temporal variability of the core shift. We argue that the core shift variability is a common phenomenon, as established for 33 of 40 AGNs we study. Our analysis shows that the typical offsets between the core positions at 2 and 8 GHz are about 0.5 mas and they vary in time. Typical variability of the individual core positions is about 0.3 mas. The measurements show a strong dependence between the core position and its flux density, suggesting that changes in both are likely related to the nuclear flares injecting denser plasma into the flow. We determine that density of emitting relativistic particles significantly increases during these flares, while relative magnetic field changes less and in the opposite direction.
In extragalactic jets, the apparent position of the bright/narrow end (the core) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. The effect must be taken into account in order to achieve unbiased resu lts from multi-frequency VLBI data on AGN jets. Multi-frequency core shift measurements supplemented by other data enable estimating the absolute geometry and a number of fundamental physical properties of the jets and their environment. We have previously measured the shift between 13 and 3.6 cm in a sample of 29 AGNs to range between 0 and 1.4 mas. In these proceedings, we present and discuss first results of our follow-up study using VLBA between 1.4 and 15.4 GHz.
134 - A.B. Pushkarev 2010
We report the detection of a non-zero time delay between radio emission measured by the VLBA at 15.4 GHz and gamma-ray radiation (gamma-ray leads radio) registered by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope for a s ample of 183 radio and gamma-ray bright active galactic nuclei (AGNs). For the correlation analysis we used 100 MeV - 100 GeV gamma-ray photon fluxes, taken from monthly binned measurements from the first Fermi LAT catalog, and 15.4 GHz radio flux densities from the MOJAVE VLBA program. The correlation is most pronounced if the core flux density is used, strongly indicating that the gamma-ray emission is generated within the compact region of the 15 GHz VLBA core. Determining the Pearsons r and Kendalls tau correlation coefficients for different time lags, we find that for the majority of sources the radio/gamma-ray delay ranges from 1 to 8 months in the observers frame and peaks at about 1.2 months in the sources frame. We interpret the primary source of the time delay to be synchrotron opacity in the nuclear region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا