ترغب بنشر مسار تعليمي؟ اضغط هنا

Opacity in parsec-scale jets of active galactic nuclei: VLBA study from 1.4 to 15 GHz

409   0   0.0 ( 0 )
 نشر من قبل Yuri Kovalev Jr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In extragalactic jets, the apparent position of the bright/narrow end (the core) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. The effect must be taken into account in order to achieve unbiased results from multi-frequency VLBI data on AGN jets. Multi-frequency core shift measurements supplemented by other data enable estimating the absolute geometry and a number of fundamental physical properties of the jets and their environment. We have previously measured the shift between 13 and 3.6 cm in a sample of 29 AGNs to range between 0 and 1.4 mas. In these proceedings, we present and discuss first results of our follow-up study using VLBA between 1.4 and 15.4 GHz.



قيم البحث

اقرأ أيضاً

123 - M. L. Lister 2017
We present 5321 milliarcsecond-resolution total intensity and linear polarization maps of 437 active galactic nuclei (AGNs) obtained with the VLBA at 15 GHz as part of the MOJAVE survey, and also from the NRAO data archive. The former is a long-term program to study the structure and evolution of powerful parsec-scale outflows associated with AGNs. The targeted AGNs are drawn from several flux-limited radio and gamma-ray samples, and all have correlated VLBA flux densities greater than about 50 mJy at 15 GHz. Approximately 80% of these AGNs are associated with gamma-ray sources detected by the Fermi LAT instrument. The vast majority were observed with the VLBA on 5 to 15 occasions between 1996 January 19 and 2016 December 26, at intervals ranging from a month to several years, with the most typical sampling interval being six months. A detailed analysis of the linear and circular polarization evolution of these AGN jets are presented in other papers in this series.
The apparent position of jet base (core) in radio-loud active galactic nuclei changes with frequency because of synchrotron self-absorption. Studying this `core shift` effect enables us to reconstruct properties of the jet regions close to the centra l engine. We report here results from core shift measurements in AGNs observed with global VLBI at 2 and 8 GHz at epochs from 1994 to 2016. Our sample contains 40 objects observed at least 10 times during that period. The core shift is determined using a new automatic procedure introduced to minimize possible biases. The resulting multiple epoch measurements of the core position are employed for examining temporal variability of the core shift. We argue that the core shift variability is a common phenomenon, as established for 33 of 40 AGNs we study. Our analysis shows that the typical offsets between the core positions at 2 and 8 GHz are about 0.5 mas and they vary in time. Typical variability of the individual core positions is about 0.3 mas. The measurements show a strong dependence between the core position and its flux density, suggesting that changes in both are likely related to the nuclear flares injecting denser plasma into the flow. We determine that density of emitting relativistic particles significantly increases during these flares, while relative magnetic field changes less and in the opposite direction.
We analyze the parsec-scale jet kinematics from 2007 June to 2013 January of a sample of $gamma$-ray bright blazars monitored roughly monthly with the Very Long Baseline Array at 43~GHz. In a total of 1929 images, we measure apparent speeds of 252 em ission knots in 21 quasars, 12 BL~Lacertae objects (BLLacs), and 3 radio galaxies, ranging from 0.02$c$ to 78$c$; 21% of the knots are quasi-stationary. Approximately 1/3 of the moving knots execute non-ballistic motions, with the quasars exhibiting acceleration along the jet within 5~pc (projected) of the core, and knots in the BLLacs tending to decelerate near the core. Using apparent speeds of components and timescales of variability from their light curves, we derive physical parameters of 120 superluminal knots, including variability Doppler factors, Lorentz factors, and viewing angles. We estimate the half-opening angle of each jet based on the projected opening angle and scatter of intrinsic viewing angles of knots. We determine characteristic values of physical parameters for each jet and AGN class based on the range of values obtained for individual features. We calculate intrinsic brightness temperatures of the cores, $T_{rm b,int}^{rm core}$, at all epochs, finding that the radio galaxies usually maintain equipartition conditions in the cores, while $sim$30% of $T_{rm b,int}^{rm core}$ measurements in the quasars and BLLacs deviate from equipartition values by a factor $>$10. This probably occurs during transient events connected with active states. In the Appendix we briefly describe the behavior of each blazar during the period analyzed.
185 - Y.Y. Kovalev 2016
The data release 1 (DR1) of milliarcsecond-scale accurate optical positions of stars and galaxies was recently published by the space mission Gaia. We study the offsets of highly accurate absolute radio (very long baseline interferometry, VLBI) and o ptical positions of active galactic nuclei (AGN) to see whether or not a signature of wavelength-dependent parsec-scale structure can be seen. We analyzed VLBI and Gaia positions and determined the direction of jets in 2957 AGNs from their VLBI images. We find that there is a statistically significant excess of sources with VLBI-to-Gaia position offset in directions along and opposite to the jet. Offsets along the jet vary from zero to tens of mas. Offsets in the opposite direction do not exceed 3 mas. The presense of strong, extended parsec-scale optical jet structures in many AGNs is required to explain all observed VLBI-Gaia offsets along the jet direction. The offsets in the opposite direction shorter than 1 mas can be explained either by a non-point-like VLBI jet structure or a core-shift effect due to synchrotron opacity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا