ﻻ يوجد ملخص باللغة العربية
One of the most important products of solar flares are nonthermal energetic particles which may carry up to 50% energy releasing in the flaring processes. In radio observations, nonthermal particles generally manifest as spectral fine structures with fast frequency drifting rates, named as solar fast drifting radio bursts (FDRBs). This work demonstrated three types of FDRBs, including type III pair bursts, narrow band stochastic spike bursts following the type III bursts and spike-like bursts superimposed on type II burst in an X1.3 flare on 2014 April 25. We find that although all of them have fast frequency drifting rates, but they are intrinsically different from each other in frequency bandwidth, drifting rate and the statistical distributions. We suggest that they are possibly generated from different accelerating mechanisms. The type III pair bursts may be triggered by high-energy electron beams accelerated by the flaring magnetic reconnection, spike bursts are produced by the energetic electrons accelerated by a termination shock wave triggered by the fast reconnecting plasma outflows impacting on the flaring looptop, and spike-like bursts are possibly generated by the nonthermal electrons accelerated by moving magnetic reconnection triggered by the interaction between CME and the background magnetized plasma. These results may help us to understand the generation mechanism of nonthermal particles and energy release in solar flares.
Using a new type of oscillation map, made from the radio spectra by the wavelet technique, we study the 18 April 2014 M7.3 flare (SOL2014-04-18T13:03:00L245C017). We find a quasi-periodic character of this flare with periods in the range 65-115 secon
The GOES X1 flare SOL2014-10-25T17:08:00 was a three-ribbon solar flare observed with IRIS in the near and far ultraviolet. One of the flare ribbons crossed a sunspot umbra, producing a dramatic, $sim1000$% increase in the near-ultraviolet (NUV) cont
This work demonstrates the possibility of magnetic field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial
We studied a solar flare with pronounced quasi-periodic pulsations detected in the microwave, X-ray, and radio bands. We used the methods of correlation, Fourier, and wavelet analyses to examine the temporal fine structures and relationships between
We report a detailed examination of the red asymmetry of H-alpha emission line seen during the 2001 April 10 solar flare by using a narrowband filtergram. We investigated the temporal evolution and the spatial distribution of the red asymmetry by usi