ﻻ يوجد ملخص باللغة العربية
The GOES X1 flare SOL2014-10-25T17:08:00 was a three-ribbon solar flare observed with IRIS in the near and far ultraviolet. One of the flare ribbons crossed a sunspot umbra, producing a dramatic, $sim1000$% increase in the near-ultraviolet (NUV) continuum radiation. We comprehensively analyze the ultraviolet spectral data of the umbral flare brightenings, which provide new challenges for radiative-hydrodynamic modeling of the chromospheric velocity field and the white-light continuum radiation. The emission line profiles in the umbral flare brightenings exhibit redshifts and profile asymmetries, but these are significantly smaller than in another, well-studied X-class solar flare. We present a ratio of the NUV continuum intensity to the Fe II 2814.45 Ang intensity. This continuum-to-line ratio is a new spectral diagnostic of significant heating at high column mass (log $m/$[g cm$^{-2}] >-2$) during solar flares because the continuum and emission line radiation originate from relatively similar temperatures but moderately different optical depths. The full spectral readout of these IRIS data also allow for a comprehensive survey of the flaring NUV landscape: in addition to many lines of Fe II and Cr II, we identify a new solar flare emission line, He I $lambda2829.91$ (as previously identified in laboratory and early-type stellar spectra). The Fermi/GBM hard X-ray data provide inputs to radiative-hydrodynamic models (which will be presented in Paper II) in order to better understand the large continuum-to-line ratios, the origin of the white-light continuum radiation, and the role of electron beam heating in the low atmosphere.
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lowe
One of the most important products of solar flares are nonthermal energetic particles which may carry up to 50% energy releasing in the flaring processes. In radio observations, nonthermal particles generally manifest as spectral fine structures with
We report a detailed examination of the fine structure inside flare ribbons and the temporal evolution of this fine structure during the X2.5 solar flare that occurred on 2004 November 10. We examine elementary bursts of the C IV (1550{AA}) emission
We studied a circular-ribbon flare, SOL2014-12-17T04:51, with emphasis on its thermal evolution as determined by the Differential Emission Measure (DEM) inversion analysis of the extreme ultraviolet (EUV) images of the Atmospheric Imaging Assembly (A
The ion{Fe}{i} lines observed by the Hinode/SOT spectropolarimeter were always seen in absorption, apart from the extreme solar limb. Here we analyse a unique dataset capturing these lines in emission during a solar white-light flare. We analyse the