ﻻ يوجد ملخص باللغة العربية
First, we give a closed-form formula for first passage time of a reflected Brownian motion with drift. This modifies a formula by Perry et al (2004). Second, we show that the maximum before a fixed drawdown is exponentially distributed for any drawdown threshold, if and only if the diffusion characteristic mu/sigma^2 is constant. This complements the sufficient condition formulated by Lehoczky (1977). Third, we give an alternative proof for the fact that the maximum at a fixed drawdown threshold is exponentially distributed for any spectrally negative Levy process, a result due to Mijatovic and Pistorius (2012).
A collection of short expository essays by the author on various topics in quantum mechanics, quantum cosmology, and physics in general.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finit
We develop a theory of optimal stopping problems under G-expectation framework. We first define a new kind of random times, called G-stopping times, which is suitable for this problem. For the discrete time case with finite horizon, the value functio
In this paper, we study the optimal multiple stopping problem under the filtration consistent nonlinear expectations. The reward is given by a set of random variables satisfying some appropriate assumptions rather than an RCLL process. We first const
We propose a geometric approach for bounding average stopping times for stopped random walks in discrete and continuous time. We consider stopping times in the hyperspace of time indexes and stochastic processes. Our techniques relies on exploring ge