ﻻ يوجد ملخص باللغة العربية
Here, we are concerned with comparing estimation schemes for the quantum state under continuous measurement (quantum trajectories), namely quantum state filtering and, as introduced by us [Phys. Rev. Lett. 115, 180407 (2015)], quantum state smoothing. Unfortunately, the cumulative errors in the most typical simulations of quantum trajectories with a total time of simulation $T$ can reach orders of $T Delta t$. Moreover, these errors may correspond to deviations from valid quantum evolution as described by a completely positive map. Here we introduce a higher-order method that reduces the cumulative errors in the complete positivity of the evolution to of order $TDelta t^2$, whether for linear (unnormalised) or nonlinear (normalised) quantum trajectories. Our method also guarantees that the discrepancy in the average evolution between different detection methods (different `unravellings, such as quantum jumps or quantum diffusion) is similarly small. This equivalence is essential for comparing quantum state filtering to quantum state smoothing, as the latter assumes that all irreversible evolution is unravelled, although the estimator only has direct knowledge of some records. In particular, here we compare, for the first time, the average difference between filtering and smoothing conditioned on an event of which the estimator lacks direct knowledge: a photon detection within a certain time window. We find that the smoothed state is actually {em less pure}, both before and after the time of the jump. Similarly, the fidelity of the smoothed state with the `true (maximal knowledge) state is also lower than that of the filtered state before the jump. However, after the jump, the fidelity of the smoothed state is higher.
We investigate the evolution of open quantum systems in the presence of initial correlations with an environment. Here the standard formalism of describing evolution by completely positive trace preserving (CPTP) quantum operations can fail and non-c
Two long standing open problems in quantum theory are to characterize the class of initial system-bath states for which quantum dynamics is equivalent to (1) a map between the initial and final system states, and (2) a completely positive (CP) map. T
We provide a general construction of quantum generalized master equations with memory kernel leading to well defined, that is completely positive and trace preserving, time evolutions. The approach builds on an operator generalization of memory kerne
The wave-function Monte-Carlo method, also referred to as the use of quantum-jump trajectories, allows efficient simulation of open systems by independently tracking the evolution of many pure-state trajectories. This method is ideally suited to simu
Quantum state smoothing is a technique to construct an estimate of the quantum state at a particular time, conditioned on a measurement record from both before and after that time. The technique assumes that an observer, Alice, monitors part of the e