ﻻ يوجد ملخص باللغة العربية
Two long standing open problems in quantum theory are to characterize the class of initial system-bath states for which quantum dynamics is equivalent to (1) a map between the initial and final system states, and (2) a completely positive (CP) map. The CP map problem is especially important, due to the widespread use of such maps in quantum information processing and open quantum systems theory. Here we settle both these questions by showing that the answer to the first is all, with the resulting map being Hermitian, and that the answer to the second is that CP maps arise exclusively from the class of separable states with vanishing quantum discord.
We investigate the evolution of open quantum systems in the presence of initial correlations with an environment. Here the standard formalism of describing evolution by completely positive trace preserving (CPTP) quantum operations can fail and non-c
The problem of conditions on the initial correlations between the system and the environment that lead to completely positive (CP) or not-completely positive (NCP) maps has been studied by various authors. Two lines of study may be discerned: one con
We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanat
We introduce a framework for the construction of completely positive maps for subsystems of indistinguishable fermionic particles. In this scenario, the initial global state is always correlated, and it is not possible to tell system and environment
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if