ﻻ يوجد ملخص باللغة العربية
We investigate the $T=0$ phase diagram of a variant of the one-dimensional extended Hubbard model where particles interact via a finite-range soft-shoulder potential. Using Density Matrix Renormalization Group (DMRG) simulations, we evidence the appearance of Cluster Luttinger Liquid (CLL) phases, similarly to what first predicted in a hard-core bosonic chain [M. Mattioli, M. Dalmonte, W. Lechner, and G. Pupillo, Phys. Rev. Lett. 111, 165302]. As the interaction strength parameters change, we find different types of clusters, that encode the order of the ground state in a semi-classical approximation and give rise to different types of CLLs. Interestingly, we find that the conventional Tomonaga Luttinger Liquid (TLL) is separated by a critical line with a central charge $c=5/2$, along which the two (spin and charge) bosonic degrees of freedom (corresponding to $c=1$ each) combine in a supersymmetric way with an emergent fermionic excitation ($c=1/2$). We also demonstrate that there are no significant spin correlations.
Using time-dependent density-matrix renormalization group, we study the time evolution of electronic wave packets in the one-dimensional extended Hubbard model with on-site and nearest neighbor repulsion, U and V, respectively. As expected, the wave
The phase diagram of the one-dimensional extended Hubbard model at half-filling is investigated by a weak coupling renormalization group method applicable beyond the usual continuum limit for the electron spectrum and coupling constants. We analyze t
We consider the one-dimensional extended Hubbard model in the presence of an explicit dimerization $delta$. For a sufficiently strong nearest neighbour repulsion we establish the existence of a quantum phase transition between a mixed bond-order wave
We investigate the dynamical spin and charge structure factors and the one-particle spectral function of the one-dimensional extended Hubbard model at half band-filling using the dynamical density-matrix renormalization group method. The influence of
We investigate the real-time dynamics of the half-filled one-dimensional extended Hubbard model in the strong-coupling regime, when driven by a transient laser pulse. Starting from a wide regime displaying a charge-density wave in equilibrium, a robu