ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct phase mapping of the light scattered by single plasmonic nanoparticles

132   0   0.0 ( 0 )
 نشر من قبل Frank Wackenhut
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present a novel technique to directly measure the phase shift of the optical signal scattered by single plasmonic nanoparticles in a diffraction-limited laser focus. We accomplish this by equipping an inverted confocal microscope with a Michelson interferometer and scanning single nanoparticles through the focal volume while recording interferograms of the scattered and a reference wave for each pixel. For the experiments, lithographically prepared gold nanorods where used, since their plasmon resonances can be controlled via their aspect ratio. We have developed a theoretical model for image formation in confocal scattering microscopy for nanoparticles considerably smaller than the diffraction limited focus We show that the phase shift observed for particles with different longitudinal particle plasmon resonances can be well explained by the harmonic oscillator model. The direct measurement of the phase shift can further improve the understanding of the elastic scattering of individual gold nanoparticles with respect to their plasmonic properties.



قيم البحث

اقرأ أيضاً

Nanoscale phase-control is one of the most powerful approaches to specifically tailor electrical fields in modern nanophotonics. Especially the precise sub-wavelength assembly of many individual nano-building-blocks has given rise to exciting new mat erials as diverse as metamaterials, for miniaturizing optics, or 3D assembled plasmonic structures for biosensing applications. Despite its fundamental importance, the phase-response of individual nanostructures is experimentally extremely challenging to visualize. Here, we address this shortcoming and measure the quantitative scattering phase of different nanomaterials such as gold nanorods and spheres as well as dielectric nanoparticles. Beyond reporting spectrally resolved responses, with phase-changes close to pi when passing the particles plasmon resonance, we devise a simple method for distinguishing different plasmonic and dielectric particles purely based on their phase behavior. Finally, we integrate this novel approach in a single-shot two-color scheme, capable of directly identifying different types of nanoparticles on one sample, from a single widefield image.
274 - T. Stolker , C. Dominik , M. Min 2016
High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R-band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r^2-scaling. The decrease in polarized surface brightness in the scattering angle range of ~40-70 deg is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the correction of stellar irradiation is crucial for the interpretation of the images and the derivation of the dust properties in the disk surface layer.
In this paper we show that arrays of core-shell nanoparticles function as effective thin absorbers of light. In contrast to known metamaterial absorbers, the introduced absorbers are formed by single planar arrays of spherical inclusions and enable f ull absorption of light incident on either or both sides of the array. We demonstrate possibilities for realizing different kinds of symmetric absorbers, including resonant, ultra-broadband, angularly selective, and all-angle absorbers. The physical principle behind these designs is explained considering balanced electric and magnetic responses of unit cells. Photovoltaic devices and thermal emitters are the two most important potential applications of the proposed designs.
439 - Lixin Ge , Liang Liu , Shiwei Dai 2016
Unidirectional backward and forward scattering of electromagnetic waves by nanoparticles are usually interpreted as the interference of conventional multipole moments (i.e., electric and magnetic dipole, electric quadrupole, etc.). The role of toroid al dipole moments in unidirectional scattering is generally overlooked. In this work, we investigate the unidirectional scattering for the system of three plasmonic nanospheres. It is found that the unidirectional backward scattering is caused by the interference between the toroidal dipole moment and other conventional multipole moments. Tunable primary backward and forward scattering can be achieved under some specific configurations. Our results can find applications in the design of nanoantennas.
Light scattering limits the penetration depth of non-invasive Raman spectroscopy in biological media. While safe levels of irradiation may be adequate to analyze superficial tissue, scattering of the pump beam reduces the Raman signal to undetectable levels deeper within the tissue. Here we demonstrate how wavefront shaping techniques can significantly increase the Raman signal at depth, while keeping the total irradiance constant, thus increasing the amount of Raman signal available for detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا