ﻻ يوجد ملخص باللغة العربية
Light scattering limits the penetration depth of non-invasive Raman spectroscopy in biological media. While safe levels of irradiation may be adequate to analyze superficial tissue, scattering of the pump beam reduces the Raman signal to undetectable levels deeper within the tissue. Here we demonstrate how wavefront shaping techniques can significantly increase the Raman signal at depth, while keeping the total irradiance constant, thus increasing the amount of Raman signal available for detection.
We study the three-dimensional (3D) spatially-resolved distribution of the energy density of light in a 3D scattering medium upon the excitation of open transmission channels. The open transmission channels are excited by spatially shaping the incide
We present a minimally-invasive endoscope based on a multimode fiber that combines photoacoustic and fluorescence sensing. From the measurement of a transmission matrix during a prior calibration step, a focused spot is produced and raster-scanned ov
The circular polarization of light scattered by biological tissues provides valuable information and has been considered as a powerful tool for the diagnosis of tumor tissue. We propose a non-staining, non-invasive and in-vivo cancer diagnosis techni
Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth
Converting spin angular momentum to orbital angular momentum has been shown to be a practical and efficient method for generating optical beams carrying orbital angular momentum and possessing a space-varying polarized field. Here, we present novel l