ترغب بنشر مسار تعليمي؟ اضغط هنا

Guided Attention Network for Object Detection and Counting on Drones

174   0   0.0 ( 0 )
 نشر من قبل Yuanqiang Cai
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object detection and counting are related but challenging problems, especially for drone based scenes with small objects and cluttered background. In this paper, we propose a new Guided Attention Network (GANet) to deal with both object detection and counting tasks based on the feature pyramid. Different from the previous methods relying on unsupervised attention modules, we fuse different scales of feature maps by using the proposed weakly-supervised Background Attention (BA) between the background and objects for more semantic feature representation. Then, the Foreground Attention (FA) module is developed to consider both global and local appearance of the object to facilitate accurate localization. Moreover, the new data argumentation strategy is designed to train a robust model in various complex scenes. Extensive experiments on three challenging benchmarks (i.e., UAVDT, CARPK and PUCPR+) show the state-of-the-art detection and counting performance of the proposed method compared with existing methods.



قيم البحث

اقرأ أيضاً

In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse atte ntion mechanism into the counting network, resulting in significant improvements. The proposed method, which is based on VGG-16, is a single-step training framework and is simple to implement. The use of segmentation information results in minimal computational overhead and does not require any additional annotations. We demonstrate the significance of segmentation guided inverse attention through a detailed analysis and ablation study. Furthermore, the proposed method is evaluated on three challenging crowd counting datasets and is shown to achieve significant improvements over several recent methods.
Pedestrian detection relying on deep convolution neural networks has made significant progress. Though promising results have been achieved on standard pedestrians, the performance on heavily occluded pedestrians remains far from satisfactory. The ma in culprits are intra-class occlusions involving other pedestrians and inter-class occlusions caused by other objects, such as cars and bicycles. These result in a multitude of occlusion patterns. We propose an approach for occluded pedestrian detection with the following contributions. First, we introduce a novel mask-guided attention network that fits naturally into popular pedestrian detection pipelines. Our attention network emphasizes on visible pedestrian regions while suppressing the occluded ones by modulating full body features. Second, we empirically demonstrate that coarse-level segmentation annotations provide reasonable approximation to their dense pixel-wise counterparts. Experiments are performed on CityPersons and Caltech datasets. Our approach sets a new state-of-the-art on both datasets. Our approach obtains an absolute gain of 9.5% in log-average miss rate, compared to the best reported results on the heavily occluded (HO) pedestrian set of CityPersons test set. Further, on the HO pedestrian set of Caltech dataset, our method achieves an absolute gain of 5.0% in log-average miss rate, compared to the best reported results. Code and models are available at: https://github.com/Leotju/MGAN.
Zero-shot object detection (ZSD), the task that extends conventional detection models to detecting objects from unseen categories, has emerged as a new challenge in computer vision. Most existing approaches tackle the ZSD task with a strict mapping-t ransfer strategy, which may lead to suboptimal ZSD results: 1) the learning process of those models ignores the available unseen class information, and thus can be easily biased towards the seen categories; 2) the original visual feature space is not well-structured and lack of discriminative information. To address these issues, we develop a novel Semantics-Guided Contrastive Network for ZSD, named ContrastZSD, a detection framework that first brings contrastive learning mechanism into the realm of zero-shot detection. Particularly, ContrastZSD incorporates two semantics-guided contrastive learning subnets that contrast between region-category and region-region pairs respectively. The pairwise contrastive tasks take advantage of additional supervision signals derived from both ground truth label and pre-defined class similarity distribution. Under the guidance of those explicit semantic supervision, the model can learn more knowledge about unseen categories to avoid the bias problem to seen concepts, while optimizing the data structure of visual features to be more discriminative for better visual-semantic alignment. Extensive experiments are conducted on two popular benchmarks for ZSD, i.e., PASCAL VOC and MS COCO. Results show that our method outperforms the previous state-of-the-art on both ZSD and generalized ZSD tasks.
In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgrad ed. A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of each person, it tends to overestimate the count in low density areas. Thus, exclusively using either one of them is not sufficient to handle all kinds of scenes with varying densities. To address this issue, a novel end-to-end crowd counting framework, named DecideNet (DEteCtIon and Density Estimation Network) is proposed. It can adaptively decide the appropriate counting mode for different locations on the image based on its real density conditions. DecideNet starts with estimating the crowd density by generating detection and regression based density maps separately. To capture inevitable variation in densities, it incorporates an attention module, meant to adaptively assess the reliability of the two types of estimations. The final crowd counts are obtained with the guidance of the attention module to adopt suitable estimations from the two kinds of density maps. Experimental results show that our method achieves state-of-the-art performance on three challenging crowd counting datasets.
To promote the developments of object detection, tracking and counting algorithms in drone-captured videos, we construct a benchmark with a new drone-captured largescale dataset, named as DroneCrowd, formed by 112 video clips with 33,600 HD frames in various scenarios. Notably, we annotate 20,800 people trajectories with 4.8 million heads and several video-level attributes. Meanwhile, we design the Space-Time Neighbor-Aware Network (STNNet) as a strong baseline to solve object detection, tracking and counting jointly in dense crowds. STNNet is formed by the feature extraction module, followed by the density map estimation heads, and localization and association subnets. To exploit the context information of neighboring objects, we design the neighboring context loss to guide the association subnet training, which enforces consistent relative position of nearby objects in temporal domain. Extensive experiments on our DroneCrowd dataset demonstrate that STNNet performs favorably against the state-of-the-arts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا