ﻻ يوجد ملخص باللغة العربية
In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse attention mechanism into the counting network, resulting in significant improvements. The proposed method, which is based on VGG-16, is a single-step training framework and is simple to implement. The use of segmentation information results in minimal computational overhead and does not require any additional annotations. We demonstrate the significance of segmentation guided inverse attention through a detailed analysis and ablation study. Furthermore, the proposed method is evaluated on three challenging crowd counting datasets and is shown to achieve significant improvements over several recent methods.
While the performance of crowd counting via deep learning has been improved dramatically in the recent years, it remains an ingrained problem due to cluttered backgrounds and varying scales of people within an image. In this paper, we propose a Shall
Automatic estimation of the number of people in unconstrained crowded scenes is a challenging task and one major difficulty stems from the huge scale variation of people. In this paper, we propose a novel Deep Structured Scale Integration Network (DS
Automatic analysis of highly crowded people has attracted extensive attention from computer vision research. Previous approaches for crowd counting have already achieved promising performance across various benchmarks. However, to deal with the real
Crowd counting from unconstrained scene images is a crucial task in many real-world applications like urban surveillance and management, but it is greatly challenged by the cameras perspective that causes huge appearance variations in peoples scales
We study video crowd counting, which is to estimate the number of objects (people in this paper) in all the frames of a video sequence. Previous work on crowd counting is mostly on still images. There has been little work on how to properly extract a