ﻻ يوجد ملخص باللغة العربية
Jupiters atmosphere is enriched in C, N, S, P, Ar, Kr and Xe with respect to solar abundances by a factor of ~3. Gas Giant envelopes are mainly enriched through the dissolution of solids in the atmosphere, and this constant enrichment factor is puzzling since several of the above elements are not expected to have been in the solid phase in Jupiters feeding zone; most seriously, Ar and the main carrier of N, N2, only condense at the very low temperatures, 21-26 K, associated with the outer solar nebula. We propose that a plausible solution to the enigma of Jupiters uniform enrichment pattern is that Jupiters core formed exterior to the N2 and Ar snowlines, beyond 30 au, resulting in a Solar composition core in all volatiles heavier than Ne. During envelope accretion and planetesimal bombardment, some of the core mixed in with the envelope causing the observed enrichment pattern. We show that this scenario naturally produces the observed atmosphere composition, even with substantial pollution from N-poor pebble and planetesimal accretion in Jupiters final feeding zone. We note that giant core formation at large nebular radii is consistent with recent models of gas giant core formation through pebble accretion, which requires the core to form exterior to Jupiters current location to counter rapid inward migration during the core and envelope formation process. If this scenario is common, gas giant core formation may account for many of the gaps observed in protoplanetary disks between 10s and 100 au.
SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging o
The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their
The day and nightside temperatures of hot Jupiters are diagnostic of heat transport processes in their atmospheres. Recent observations have shown that the nightsides of hot Jupiters are a nearly constant 1100 K for a wide range of equilibrium temper
We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that sugges
We have obtained high-resolution spectra of Jupiters Great Red Spot (GRS) between 4.6 and 5.4 microns using telescopes on Mauna Kea in order to derive gas abundances and to constrain its cloud structure between 0.5 and 5~bars. We used line profiles o