ﻻ يوجد ملخص باللغة العربية
SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHEREs scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei.
Context. Observing Jupiters synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data
We present observations with the planet finder SPHERE of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide R
Recent high-contrast imaging surveys, looking for planets in young, nearby systems showed evidence of a small number of giant planets at relatively large separation beyond typically 20 au where those surveys are the most sensitive. Access to smaller
Young giant exoplanets emit infrared radiation that can be linearly polarized up to several percent. This linear polarization can trace: 1) the presence of atmospheric cloud and haze layers, 2) spatial structure, e.g. cloud bands and rotational flatt
Sirius has always attracted a lot of scientific interest, especially after the discovery of a companion white dwarf at the end of the 19th century. Very early on, the existence of a potential third body was put forward to explain some of the observed