ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-correlating 21 cm and galaxy surveys: implications for cosmology and astrophysics

75   0   0.0 ( 0 )
 نشر من قبل Hamsa Padmanabhan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hamsa Padmanabhan




اسأل ChatGPT حول البحث

We forecast astrophysical and cosmological parameter constraints from synergies between 21 cm intensity mapping and wide field optical galaxy surveys (both spectroscopic and photometric) over $z sim 0-3$. We focus on the following survey combinations in this work: (i) a CHIME-like and DESI-like survey in the northern hemisphere, (ii) an LSST-like and SKA I MID-like survey and (ii) a MeerKAT-like and DES-like survey in the southern hemisphere. We work with the $Lambda$CDM cosmological model having parameters ${h, Omega_m, n_s, Omega_b, sigma_8}$, parameters $v_{c,0}$ and $beta$ representing the cutoff and slope of the HI-halo mass relation in the previously developed HI halo model framework, and a parameter $Q$ that represents the scale dependence of the optical galaxy bias. Using a Fisher forecasting framework, we explore (i) the effects of the HI and galaxy astrophysical uncertainties on the cosmological parameter constraints, assuming priors from the present knowledge of the astrophysics, (ii) the improvements on astrophysical constraints over their current priors in the three configurations considered, (ii) the tightening of the constraints on the parameters relative to the corresponding HI auto-correlation surveys alone.



قيم البحث

اقرأ أيضاً

We use the results of previous work building a halo model formalism for the distribution of neutral hydrogen, along with experimental parameters of future radio facilities, to place forecasts on astrophysical and cosmological parameters from next gen eration surveys. We consider 21 cm intensity mapping surveys conducted using the BINGO, CHIME, FAST, TianLai, MeerKAT and SKA experimental configurations. We work with the 5-parameter cosmological dataset of {$Omega_m, sigma_8, h, n_s, Omega_b$} assuming a flat $Lambda$CDM model, and the astrophysical parameters {$v_{c,0}, beta$} which represent the cutoff and slope of the HI- halo mass relation. We explore (i) quantifying the effects of the astrophysics on the recovery of the cosmological parameters, (ii) the dependence of the cosmological forecasts on the details of the astrophysical parametrization, and (iii) the improvement of the constraints on probing smaller scales in the HI power spectrum. For an SKA I MID intensity mapping survey alone, probing scales up to $ell_{rm max} = 1000$, we find a factor of $1.1 - 1.3$ broadening in the constraints on $Omega_b$ and $Omega_m$, and of $2.4 - 2.6$ on $h$, $n_s$ and $sigma_8$, if we marginalize over astrophysical parameters without any priors. However, even the prior information coming from the present knowledge of the astrophysics largely alleviates this broadening. These findings do not change significantly on considering an extended HIHM relation, illustrating the robustness of the results to the choice of the astrophysical parametrization. Probing scales up to $ell_{rm max} = 2000$ improves the constraints by factors of 1.5-1.8. The forecasts improve on increasing the number of tomographic redshift bins, saturating, in many cases, with 4 - 5 redshift bins. We also forecast constraints for intensity mapping with other experiments, and draw similar conclusions.
Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors of ${sim}1.2$ to ${sim}1.8$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of ${sim}2$ to ${sim}12$ over internal photo-$z$ reconstructions.
Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology fro m redshifts 1<z<4 . In this review we discuss recent advances in our theoretical understanding of the epoch of reionization (EoR), the application of 21 cm tomography to cosmology and measurements of the dark energy equation of state after reionization, and the instrumentation and observational techniques shared by 21 cm EoR and post reionization cosmology machines. We place particular emphasis on the expected signal and observational capabilities of first generation 21 cm fluctuation instruments.
Recently, the Hydrogen Epoch of Reionization Array (HERA) collaboration has produced the experiments first upper limits on the power spectrum of 21-cm fluctuations at z~8 and 10. Here, we use several independent theoretical models to infer constraint s on the intergalactic medium (IGM) and galaxies during the epoch of reionization (EoR) from these limits. We find that the IGM must have been heated above the adiabatic cooling threshold by z~8, independent of uncertainties about the IGM ionization state and the nature of the radio background. Combining HERA limits with galaxy and EoR observations constrains the spin temperature of the z~8 neutral IGM to 27 K < T_S < 630 K (2.3 K < T_S < 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the CMB dominates the z~8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones (with soft band X-ray luminosities per star formation rate constrained to L_X/SFR = { 10^40.2, 10^41.9 } erg/s/(M_sun/yr) at 68% confidence), consistent with expectations of X-ray binaries in low-metallicity environments. The z~10 limits require even earlier heating if dark-matter interactions (e.g., through millicharges) cool down the hydrogen gas. Using a model in which an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L_{r, u}/SFR > 3.9 x 10^24 W/Hz/(M_sun/yr) and L_X/SFR<10^40 erg/s/(M_sun/yr). The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent EDGES detection. The analysis framework described here provides a foundation for the interpretation of future HERA results.
During the next decade, gravitational waves will be observed from hundreds of binary inspiral events. When the redshifts of the host galaxies are known, these events can be used as `standard sirens, sensitive to the expansion rate of the Universe. Me asurements of the Hubble constant $H_0$ from standard sirens can be done independently of other cosmological probes, and events occurring at $z<0.1$ will allow us to infer $H_0$ independently of cosmological models. The next generation of spectroscopic galaxy surveys will play a crucial role in reducing systematic uncertainties in $H_0$ from standard sirens, particularly for the numerous `dark sirens which do not have an electromagnetic counterpart. In combination with large spectroscopic data sets, standard sirens with an EM counterpart are expected to constrain $H_0$ to $sim 1-2%$ precision within the next decade. This is competitive with the best estimates of $H_0$ obtained to date and will help illuminate the current tension between existing measurements. Information on the galaxies that host the gravitational wave events will also shed light on the origin and evolution of compact object binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا