ترغب بنشر مسار تعليمي؟ اضغط هنا

Reionization and Cosmology with 21 cm Fluctuations

462   0   0.0 ( 0 )
 نشر من قبل Miguel F. Morales
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology from redshifts 1<z<4 . In this review we discuss recent advances in our theoretical understanding of the epoch of reionization (EoR), the application of 21 cm tomography to cosmology and measurements of the dark energy equation of state after reionization, and the instrumentation and observational techniques shared by 21 cm EoR and post reionization cosmology machines. We place particular emphasis on the expected signal and observational capabilities of first generation 21 cm fluctuation instruments.



قيم البحث

اقرأ أيضاً

21 cm power spectrum observations have the potential to revolutionize our understanding of the Epoch of Reionization and Dark Energy, but require extraordinarily precise data analysis methods to separate the cosmological signal from the astrophysical and instrumental contaminants. This analysis challenge has led to a diversity of proposed analyses, including delay spectra, imaging power spectra, m-mode analysis, and numerous others. This diversity of approach is a strength, but has also led to confusion within the community about whether insights gleaned by one group are applicable to teams working in different analysis frameworks. In this paper we show that all existing analysis proposals can be classified into two distinct families based on whether they estimate the power spectrum of the measured or reconstructed sky. This subtle difference in the statistical question posed largely determines the susceptibility of the analyses to foreground emission and calibration errors, and ultimately the science different analyses can pursue. In this paper we detail the origin of the two analysis families, categorize the analyses being actively developed, and explore their relative sensitivities to foreground contamination and calibration errors.
Maximally Smooth Functions (MSFs) are a form of constrained functions in which there are no inflection points or zero crossings in high order derivatives. Consequently, they have applications to signal recovery in experiments where signals of interes t are expected to be non-smooth features masked by larger smooth signals or foregrounds. They can also act as a powerful tool for diagnosing the presence of systematics. The constrained nature of MSFs makes fitting these functions a non-trivial task. We introduce maxsmooth, an open source package that uses quadratic programming to rapidly fit MSFs. We demonstrate the efficiency and reliability of maxsmooth by comparison to commonly used fitting routines and show that we can reduce the fitting time by approximately two orders of magnitude. We introduce and implement with maxsmooth Partially Smooth Functions, which are useful for describing elements of non-smooth structure in foregrounds. This work has been motivated by the problem of foreground modelling in 21-cm cosmology. We discuss applications of maxsmooth to 21-cm cosmology and highlight this with examples using data from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) and the Large-aperture Experiment to Detect the Dark Ages (LEDA) experiments. We demonstrate the presence of a sinusoidal systematic in the EDGES data with a log-evidence difference of $86.19pm0.12$ when compared to a pure foreground fit. MSFs are applied to data from LEDA for the first time in this paper and we identify the presence of sinusoidal systematics. maxsmooth is pip installable and available for download at: https://github.com/htjb/maxsmooth
We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the North Celestial Pole (NCP). After subtraction of the sky model and the noise bias, we detect a non-zero $Delta^2_{rm I} = (56 pm 13 {rm mK})^2$ (1-$sigma$) excess variance and a best 2-$sigma$ upper limit of $Delta^2_{rm 21} < (79.6 {rm mK})^2$ at $k=0.053$$h$cMpc$^{-1}$ in the range $z=$9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to non-linear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
Spectral distortions in the cosmic microwave background over the 40--200~MHz band are imprinted by neutral hydrogen in the intergalactic medium prior to the end of reionization. This signal, produced in the redshift range $z = 6-34$ at the rest frame wavelength of 21 cm, has not been detected yet; and poor understanding of high redshift astrophysics results in a large uncertainty in the expected spectrum. The SARAS~2 radiometer was purposely designed to detect the sky-averaged 21-cm signal. The instrument, deployed at the Timbaktu Collective (Southern India) in April--June 2017, collected 63~hr of science data, which were examined for the presence of the cosmological 21-cm signal. In our previous work the first-light data from SARAS~2 radiometer were analyzed with Bayesian likelihood-ratio tests using $264$ plausible astrophysical scenarios. In this paper we re-examine the data using an improved analysis based on the frequentist approach and forward modeling. We show that SARAS~2 data rejects 27 models, out of which 25 are rejected at a significance $>5sigma$. All the rejected models share the scenario of inefficient heating of the primordial gas by the first population of X-ray sources along with rapid reionization.
217 - Rennan Barkana 2014
Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with neutral hydrogen at early times, the most promising method for observing the epoc h of the first stars is using the prominent 21-cm spectral line of the hydrogen atom. Current observational efforts are focused on the reionization era (cosmic age t~500 Myr), with earlier times considered much more challenging. However, the next frontier of even earlier galaxy formation (t~200 Myr) is emerging as a promising observational target. This is made possible by a recently noticed effect of a significant relative velocity between the baryons and dark matter at early times. The velocity difference significantly suppresses star formation. The spatial variation of this suppression enhances large-scale clustering and produces a prominent cosmic web on 100 comoving Mpc scales in the 21-cm intensity distribution. This structure makes it much more feasible for radio astronomers to detect these early stars, and should drive a new focus on this era, which is rich with little-explored astrophysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا