ﻻ يوجد ملخص باللغة العربية
The Stochastic Series Expansion (SSE) technique is a quantum Monte Carlo method that is especially efficient for many quantum spin systems and boson models. It was the first generic method free from the discretization errors affecting previous path integral based approaches. These lecture notes give a brief overview of the SSE method and its applications. In the introductory section, the representation of quantum statistical mechanics by the power series expansion of ${rm e}^{-beta H}$ will be compared with path integrals in discrete and continuous imaginary time. Extensions of the SSE approach to ground state projection and quantum annealing in imaginary time will also be briefly discussed. The later sections introduce efficient sampling schemes (loop and cluster updates) that have been developed for many classes of models. A summary of generic forms of estimators for important observables are also given. Applications are discussed in the last section.
Several rare earth magnetic pyrochlore materials are well modeled by a spin-1/2 quantum Hamiltonian with anisotropic exchange parameters Js. For the Er2Ti2O7 material, the Js were recently determined from high-field inelastic neutron scattering measu
In this paper, we develop a new neural network family based on power series expansion, which is proved to achieve a better approximation accuracy in comparison with existing neural networks. This new set of neural networks embeds the power series exp
We develop high temperature series expansions for $ln{Z}$ and the uniform structure factor of the spin-half Heisenberg model on the hyperkagome lattice to order $beta^{16}$. These expansions are used to calculate the uniform susceptibility ($chi$), t
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical com
We present a perturbative approach to the problem of computation of mixed-state fidelity susceptibility (MFS) for thermal states. The mathematical techniques used provides an analytical expression for the MFS as a formal expansion in terms of the the