ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Transition and Thermal Order-by-Disorder in the Pyrochlore Quantum Antiferromagnet Er2Ti2O7: a High-Temperature Series Expansion Study

450   0   0.0 ( 0 )
 نشر من قبل Michel Gingras
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several rare earth magnetic pyrochlore materials are well modeled by a spin-1/2 quantum Hamiltonian with anisotropic exchange parameters Js. For the Er2Ti2O7 material, the Js were recently determined from high-field inelastic neutron scattering measurements. Here, we perform high-temperature (T) series expansions to compute the thermodynamic properties of this material using these Js. Comparison with experimental data show that the model describes the material very well including the finite temperature phase transition to an ordered phase at Tc~1.2 K. We show that high temperature expansions give identical results for different q=0 xy order parameter susceptibilities up to 8th order in beta=1/T (presumably to all orders in beta). Conversely, a non-linear susceptibility related to the 6th power of the order parameter reveals a thermal order-by-disorder selection of the same non-colinear psi_2 state as found in Er2Ti2O7.



قيم البحث

اقرأ أيضاً

Motivated by recent neutron scattering experiments, we derive and study an effective pseudo-dipolar spin-1/2 model for the XY pyrochlore antiferromagnet Er2Ti2O7. While a bond-dependent in-plane exchange anisotropy removes any continuous symmetry, it does lead to a one-parameter `accidental classical degeneracy. This degeneracy is lifted by quantum fluctuations in favor of the non-coplanar spin structure observed experimentally -- a rare experimental instance of quantum order by disorder. A non-Goldstone low-energy mode is present in the excitation spectrum in accordance with inelastic neutron scattering data. Our theory also resolves the puzzle of the experimentally observed continuous ordering transition, absent from previous models.
130 - S. Petit , J. Robert , S. Guitteny 2014
Examples of materials where an order by disorder mechanism is at play to select a particular ground state are scarce. It has recently been proposed, however, that the antiferromagnetic XY pyrochlore Er2Ti2O7, reveals a most convincing case of this me chanism. Observation of a spin gap at zone centers has recently been interpreted as a corroboration of this physics. In this paper, we argue, however, that the anisotropy generated by the interaction-induced admixing between the crystal-field ground and excited levels provides for an alternative mechanism. It especially predicts the opening of a spin gap of about 15 micro-eV, which is of the same order of magnitude as the one observed experimentally. We report new high resolution inelastic neutron scattering data which can be well understood within this scenario.
The recent determination of a robust spin Hamiltonian for the anti-ferromagnetic XY pyrochlore Er2Ti2O7 reveals a most convincing case of the order by quantum disorder (ObQD) mechanism for ground state selection. This mechanism relies on quantum fluc tuations to remove an accidental symmetry of the magnetic ground state, and selects a particular ordered spin structure below T_N=1.2K. The removal of the continuous degeneracy results in an energy gap in the spectrum of spin wave excitations, long wavelength pseudo-Goldstone modes. We have measured the ObQD spin wave gap at a zone center in Er2Ti2O7, using low incident energy neutrons and the time-of-flight inelastic scattering method. We report a gap of Delta =0.053 +/- 0.006 meV, which is consistent with upper bounds placed on it from heat capacity measurements and roughly consistent with theoretical estimate of ~ 0.02 meV, further validating the spin Hamiltonian that led to that prediction. The gap is observed to vary with square of the order parameter, and goes to zero for T ~ T_N.
Here we establish the systematic existence of a U(1) degeneracy of all symmetry-allowed Hamiltonians quadratic in the spins on the pyrochlore lattice, at the mean-field level. By extracting the Hamiltonian of Er2Ti2O7 from inelastic neutron scatterin g measurements, we then show that the U(1)-degenerate states of Er2Ti2O7 are its classical ground states, and unambiguously show that quantum fluctuations break the degeneracy in a way which is confirmed by experiment. This is the first definitive observation of order-by-disorder in any material. We provide further verifiable consequences of this phenomenon, and several additional comparisons between theory and experiment.
62 - R. Schick , T. Ziman , 2020
In frustrated magnetic systems with competing interactions fluctuations can lift the residual accidental degeneracy. We argue that the state selection may have different outcomes for quantum and thermal order by disorder. As an example, we consider t he semiclassical Heisenberg fcc antiferromagnet with only the nearest-neighbor interactions. Zero-point oscillations select the type 3 collinear antiferromagnetic state at T=0. Thermal fluctuations favor instead the type 1 antiferromagnetic structure. The opposite tendencies result in a finite-temperature transition between the two collinear states. Competition between effects of quantum and thermal order by disorder is a general phenomenon and is also realized in the J1-J2 square-lattice antiferromagnet at the critical point J2 = 0.5 J1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا