ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex hybridization physics and evidence of structural anomaly to be a bulk property in an exotic Fe-based compound, CaFe2As2

100   0   0.0 ( 0 )
 نشر من قبل Prof. Kalobaran Maiti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface of quantum materials often exhibits significantly different behavior than the bulk due to changed topologies and symmetry protections. The outstanding problem is to find out if the exoticity of a material is linked to the changed topology at the surface or it is a bulk property. Hard x-ray photoemission spectroscopy (HAXPES) is a significantly bulk sensitive technique (escape depth of valence electrons is about 40 AA for 6 keV photon energy) and the probing depth can be tuned by changing the electron emission angle. Therefore, HAXPES is often used to reveal the surface-bulk differences in a material. Here, we show that the delineation of surface-bulk differences in the valence band spectral functions using this method is highly non-trivial due to the complexity arising from linear dichroic effect in addition to the change in surface sensitivity. We show that core level spectra can be used to reveal the surface-bulk differences in the electronic structure. The Ca 2p spectra exhibit evidence of significant hybridization with the conduction electrons revealing their importance in the electronic properties of the system as also found for the charge reservoir layers in cuprate superconductors. The Fe 2p core level spectra as a function of bulk sensitivity and temperature reveals an unusual scenario; while the surface electronic structure corroborates well with the observed phase transitions of the system, the bulk spectra exhibit signature of additional structural phases providing a rare evidence of structural anomaly to be a bulk property.



قيم البحث

اقرأ أيضاً

Using complementary polarized and unpolarized single-crystal neutron diffraction, we have investigated the temperature-dependent magnetic structures of Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$. Upon 50 % dilution of the Eu sites with isovalent Ca$^{2+}$, the Eu sublattice is found to be still long-range ordered below $mathit{T_{Eu}}$ = 10 K, in the A-typed antiferromagnetic (AFM) structure. The moment size of Eu$^{2+}$ spins is estimated to be as large as 6.74(4) $mu_{B}$ at 2.5 K. The Fe sublattice undergoes a spin-density-wave transition at $mathit{T_{SDW}}$ = 192(2) K and displays an in-plane AFM structure above $mathit{T_{Eu}}$. However, at 2.5 K, the Fe$^{2+}$ moments are found to be ordered in a canted AFM structure with a canting angle of 14(4){deg} out of the $mathit{ab}$ plane. The spin reorientation of Fe below the AFM ordering temperature of Eu provides a direct evidence of a strong interplay between the two magnetic sublattices in Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$.
In the series R2PdSi3, Nd2PdSi3 is an anomalous compound in the sense that it exhibits ferromagnetic order unlike other members in this family. The magnetic ordering temperature is also unusually high compared to the expected value for a Nd-based sys tem, assuming 4f localization. Here, we have studied the electronic structure of single crystalline Nd2PdSi3 employing high resolution photoemission spectroscopy and ab initio band structure calculations. Theoretical results obtained for the effective electron correlation strength of 6 eV corroborate well with the experimental valence band spectra. While there is significant Pd 4d-Nd 4f hybridization, the states near the Fermi level are found to be dominated by hybridized Nd 4f-Si 3p states. Nd 3d core level spectrum exhibits multiple features manifesting strong final state effects due to electron correlation, charge transfer and collective excitations. These results serve as one of the rare demonstrations of hybridization of Nd 4$f$ states with the conduction electrons possibly responsible for the exoticity of this compound.
The structural properties of the CaFe2As2 have been investigated by x-ray and neutron powder diffraction techniques as a function of temperature. Unambiguous experimental evidence is shown for coexistence of tetragonal and orthorhombic phases below 1 70 K in contrast to existing literature. Detailed Rietveld analyses of thermo-diffractograms show that the sample does not transform completely in to the orthorhombic phase at the lowest temperature even though it is the majority phase. We have found that the unit cell volume of the orthorhombic phase is higher compared to that of the tetragonal phase for all the temperatures. X-ray data on CaFe2As2 shows anomalous (at) lattice parameter contraction with increasing temperature and phase co-existence behavior below 170 K unlike other members of the 122 family of compounds like SrFe2As2 and EuFe2As2. Temperature dependent magnetization of polycrystalline CaFe2As2 sample show weak anomalies below 170 K. This behavior of the polycrystalline sample is in contrast to that of a single crystal reported earlier.
The discovery of unconventional superconductivity in hole doped NdNiO2, similar to CaCuO2, has received enormous attention. However, different from CaCuO2, RNiO2 (R = Nd, La) has itinerant electrons in the rare-earth spacer layer. Previous studies sh ow that the hybridization between Ni-dx2-y2 and rare-earth-d orbitals is very weak and thus RNiO2 is still a promising analog of CaCuO2. Here, we perform first-principles calculations to show that the hybridization between Ni-dx2-y2 orbital and itinerant electrons in RNiO2 is substantially stronger than previously thought. The dominant hybridization comes from an interstitial-s orbital rather than rare-earth-d orbitals, due to a large inter-cell hopping. Because of the hybridization, Ni local moment is screened by itinerant electrons and the critical U_Ni for long-range magnetic ordering is increased. Our work shows that the electronic structure of RNiO2 is distinct from CaCuO2, implying that the observed superconductivity in infinite-layer nickelates does not emerge from a doped Mott insulator.
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO$_4$ to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity . More crucially, from the ultralow-temperature a.c. susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion to hold also for its sister compound YbMgGaO$_4$, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا