ﻻ يوجد ملخص باللغة العربية
Surface of quantum materials often exhibits significantly different behavior than the bulk due to changed topologies and symmetry protections. The outstanding problem is to find out if the exoticity of a material is linked to the changed topology at the surface or it is a bulk property. Hard x-ray photoemission spectroscopy (HAXPES) is a significantly bulk sensitive technique (escape depth of valence electrons is about 40 AA for 6 keV photon energy) and the probing depth can be tuned by changing the electron emission angle. Therefore, HAXPES is often used to reveal the surface-bulk differences in a material. Here, we show that the delineation of surface-bulk differences in the valence band spectral functions using this method is highly non-trivial due to the complexity arising from linear dichroic effect in addition to the change in surface sensitivity. We show that core level spectra can be used to reveal the surface-bulk differences in the electronic structure. The Ca 2p spectra exhibit evidence of significant hybridization with the conduction electrons revealing their importance in the electronic properties of the system as also found for the charge reservoir layers in cuprate superconductors. The Fe 2p core level spectra as a function of bulk sensitivity and temperature reveals an unusual scenario; while the surface electronic structure corroborates well with the observed phase transitions of the system, the bulk spectra exhibit signature of additional structural phases providing a rare evidence of structural anomaly to be a bulk property.
Using complementary polarized and unpolarized single-crystal neutron diffraction, we have investigated the temperature-dependent magnetic structures of Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$. Upon 50 % dilution of the Eu sites with isovalent Ca$^{2+}$,
In the series R2PdSi3, Nd2PdSi3 is an anomalous compound in the sense that it exhibits ferromagnetic order unlike other members in this family. The magnetic ordering temperature is also unusually high compared to the expected value for a Nd-based sys
The structural properties of the CaFe2As2 have been investigated by x-ray and neutron powder diffraction techniques as a function of temperature. Unambiguous experimental evidence is shown for coexistence of tetragonal and orthorhombic phases below 1
The discovery of unconventional superconductivity in hole doped NdNiO2, similar to CaCuO2, has received enormous attention. However, different from CaCuO2, RNiO2 (R = Nd, La) has itinerant electrons in the rare-earth spacer layer. Previous studies sh
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO$_4$ to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity