ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Bounds for Perfect Sampling of $k$-Colorings in Graphs

83   0   0.0 ( 0 )
 نشر من قبل Siddharth Bhandari
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a randomized algorithm that takes as input an undirected $n$-vertex graph $G$ with maximum degree $Delta$ and an integer $k > 3Delta$, and returns a random proper $k$-coloring of $G$. The distribution of the coloring is emph{perfectly} uniform over the set of all proper $k$-colorings; the expected running time of the algorithm is $mathrm{poly}(k,n)=widetilde{O}(nDelta^2cdot log(k))$. This improves upon a result of Huber~(STOC 1998) who obtained a polynomial time perfect sampling algorithm for $k>Delta^2+2Delta$. Prior to our work, no algorithm with expected running time $mathrm{poly}(k,n)$ was known to guarantee perfectly sampling with sub-quadratic number of colors in general. Our algorithm (like several other perfect sampling algorithms including Hubers) is based on the Coupling from the Past method. Inspired by the emph{bounding chain} approach, pioneered independently by Huber~(STOC 1998) and Haggstrom & Nelander~(Scand.{} J.{} Statist., 1999), we employ a novel bounding chain to derive our result for the graph coloring problem.



قيم البحث

اقرأ أيضاً

In this paper we further investigate the well-studied problem of finding a perfect matching in a regular bipartite graph. The first non-trivial algorithm, with running time $O(mn)$, dates back to K{o}nigs work in 1916 (here $m=nd$ is the number of ed ges in the graph, $2n$ is the number of vertices, and $d$ is the degree of each node). The currently most efficient algorithm takes time $O(m)$, and is due to Cole, Ost, and Schirra. We improve this running time to $O(min{m, frac{n^{2.5}ln n}{d}})$; this minimum can never be larger than $O(n^{1.75}sqrt{ln n})$. We obtain this improvement by proving a uniform sampling theorem: if we sample each edge in a $d$-regular bipartite graph independently with a probability $p = O(frac{nln n}{d^2})$ then the resulting graph has a perfect matching with high probability. The proof involves a decomposition of the graph into pieces which are guaranteed to have many perfect matchings but do not have any small cuts. We then establish a correspondence between potential witnesses to non-existence of a matching (after sampling) in any piece and cuts of comparable size in that same piece. Kargers sampling theorem for preserving cuts in a graph can now be adapted to prove our uniform sampling theorem for preserving perfect matchings. Using the $O(msqrt{n})$ algorithm (due to Hopcroft and Karp) for finding maximum matchings in bipartite graphs on the sampled graph then yields the stated running time. We also provide an infinite family of instances to show that our uniform sampling result is tight up to poly-logarithmic factors (in fact, up to $ln^2 n$).
144 - Dorna Abdolazimi , Kuikui Liu , 2021
We show that the natural Glauber dynamics mixes rapidly and generates a random proper edge-coloring of a graph with maximum degree $Delta$ whenever the number of colors is at least $qgeq (frac{10}{3} + epsilon)Delta$, where $epsilon>0$ is arbitrary a nd the maximum degree satisfies $Delta geq C$ for a constant $C = C(epsilon)$ depending only on $epsilon$. For edge-colorings, this improves upon prior work cite{Vig99, CDMPP19} which show rapid mixing when $qgeq (frac{11}{3}-epsilon_0 ) Delta$, where $epsilon_0 approx 10^{-5}$ is a small fixed constant. At the heart of our proof, we establish a matrix trickle-down theorem, generalizing Oppenheims influential result, as a new technique to prove that a high dimensional simplical complex is a local spectral expander.
We consider the well-studied problem of finding a perfect matching in $d$-regular bipartite graphs with $2n$ vertices and $m = nd$ edges. While the best-known algorithm for general bipartite graphs (due to Hopcroft and Karp) takes $O(m sqrt{n})$ time , in regular bipartite graphs, a perfect matching is known to be computable in $O(m)$ time. Very recently, the $O(m)$ bound was improved to $O(min{m, frac{n^{2.5}ln n}{d}})$ expected time, an expression that is bounded by $tilde{O}(n^{1.75})$. In this paper, we further improve this result by giving an $O(min{m, frac{n^2ln^3 n}{d}})$ expected time algorithm for finding a perfect matching in regular bipartite graphs; as a function of $n$ alone, the algorithm takes expected time $O((nln n)^{1.5})$. To obtain this result, we design and analyze a two-stage sampling scheme that reduces the problem of finding a perfect matching in a regular bipartite graph to the same problem on a subsampled bipartite graph with $O(nln n)$ edges that has a perfect matching with high probability. The matching is then recovered using the Hopcroft-Karp algorithm. While the standard analysis of Hopcroft-Karp gives us an $tilde{O}(n^{1.5})$ running time, we present a tighter analysis for our special case that results in the stronger $tilde{O}(min{m, frac{n^2}{d} })$ time mentioned earlier. Our proof of correctness of this sampling scheme uses a new correspondence theorem between cuts and Halls theorem ``witnesses for a perfect matching in a bipartite graph that we prove. We believe this theorem may be of independent interest; as another example application, we show that a perfect matching in the support of an $n times n$ doubly stochastic matrix with $m$ non-zero entries can be found in expected time $tilde{O}(m + n^{1.5})$.
87 - David Steurer 2006
Many load balancing problems that arise in scientific computing applications ask to partition a graph with weights on the vertices and costs on the edges into a given number of almost equally-weighted parts such that the maximum boundary cost over al l parts is small. Here, this partitioning problem is considered for bounded-degree graphs G=(V,E) with edge costs c: E->R+ that have a p-separator theorem for some p>1, i.e., any (arbitrarily weighted) subgraph of G can be separated into two parts of roughly the same weight by removing a vertex set S such that the edges incident to S in the subgraph have total cost at most proportional to (SUM_e c^p_e)^(1/p), where the sum is over all edges e in the subgraph. We show for all positive integers k and weights w that the vertices of G can be partitioned into k parts such that the weight of each part differs from the average weight by less than MAX{w_v; v in V}, and the boundary edges of each part have cost at most proportional to (SUM_e c_e^p/k)^(1/p) + MAX_e c_e. The partition can be computed in time nearly proportional to the time for computing a separator S of G. Our upper bound on the boundary costs is shown to be tight up to a constant factor for infinitely many instances with a broad range of parameters. Previous results achieved this bound only if one has c=1, w=1, and one allows parts with weight exceeding the average by a constant fraction.
We show that any proper coloring of a Kneser graph $KG_{n,k}$ with $n-2k+2$ colors contains a trivial color (i.e., a color consisting of sets that all contain a fixed element), provided $n>(2+epsilon)k^2$, where $epsilonto 0$ as $kto infty$. This bound is essentially tight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا