ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant magnetocaloric effect in Co2FeAl Heusler alloy nanoparticles

62   0   0.0 ( 0 )
 نشر من قبل Aquil Ahmad
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A giant magnetocaloric effect across the ferromagnetic (FM) to paramagnetic (PM) phase transition was observed in chemically synthesized Co2FeAl Heusler alloy nanoparticles with a mean diameter of 16 nm. In our previous report, we have observed a significant enhancement in its saturation magnetization (Ms) and Curie temperature (Tc) as compared with the bulk counterpart. Motivated from those results, here, we aim to explore its magnetocaloric properties near the Tc. The magnetic entropy change shows a positive anomaly at 1252 K. Magnetic entropy change increases linearly with the magnetic field, and a large value of ~15 J/Kg-K is detected under a moderate field of 14 kOe. It leads to a net relative cooling power of 89 J/Kg for the magnetic field change of 14 kOe. To confirm the nature of magnetic phase transition, a detailed study of its magnetization is performed. The Arrott plot and nature of the universal curve conclude that FM to PM phase transition in the present system is of second-order.



قيم البحث

اقرأ أيضاً

Co2FeAl (CFA) nanoparticles (NPs) of different sizes were synthesized by chemical route. The effect of the size of NPs upon the structure and magnetization compared to its bulk counterpart was investigated. The structure and composition were determin ed from X-ray diffraction (XRD) and electron microscopy. XRD analysis shows that the samples are having single (A2-type) disordered phase. Magnetization measurements suggest that the samples are soft ferromagnetic in nature with very low coercivity. Enhanced magnetic properties like saturation magnetization, coercive force, retentivity, and Curie-temperature are observed with a decrease in particle size. The effect of particle size on hysteresis losses is also discussed. The smallest particles of size 16 nm exhibited the highest saturation magnetization and transition temperature of 180.73 emu/g and 1261 K, respectively. The origin of enhancement in the magnetization of Co2FeAl nano-alloy is attributed to the strong Co-Co exchange interaction due to disorder present in the systems.
The effect of Co on the structural, magnetic and magnetocaloric effect (MCE) of Ni50-xCoxMn38Sb12 (x=0,2,3,4,5) Heusler alloys was studied. Using x-ray diffraction, we show the evolution of the martensitic phase from the austenite phase. The martensi tic transition temperature is found to decrease monotonically with Co concentration. Remarkable enhancement of MCE is observed near room temperature upon Co substitution. The maximum magnetic entropy change of 34 Jkg-1K-1 was achieved in x=5 at 262 K in a field of 50 kOe and a value of 29 Jkg-1K-1 found near room temperature. The significant increase in the magnetization associated with the reverse martensitic transition is responsible for the giant MCE in these compounds.
The generalized gradient approximation (GGA) scheme in the first-principles calculations are used to study the effect of L21 and XA ordering on the phase stability, half-metallicity and magnetism of Co2FeAl (CFA) Heusler alloy. Various possible hypot hetical structures: L21-I, L21-II, XA-I, and XA-II were prepared under the conventional L21 and inverse XA phases by altering the atomic occupancies at their Wyckoff sites. It is found that the XA-II phase of CFA is the most stable phase energetically among all the structures. The electronic structure calculations without U show the presence of half-metallic (HM) ground state only in L21-1 structure and the other structures are found to be metallic. However, the electronic structures of CFA are significantly modified in the presence of U, although the total magnetic moments per cell remained the same and consistent with the Slater-Pauling (SP) rule. The metallic ground states of CFA in L21-II and XA-II structures are converted into the half-metallic ground states in presence of U but remained the same (metallic) in XA-I structure. The results indicate that the electronic structures are not only dependent on the L21 and XA ordering of the atoms but also depend on the choice of U values. So experiments may only verify the superiority of GGA+U to GGA.
Density functional theory calculations within the generalized gradient approximation are employed to study the ground state of Co2FeAl. Various magnetic configurations are considered to find out its most stable phase. The ferromagnetic ground state o f the Co2FeAl is energetically observed with an optimized lattice constant of 5.70 {AA}. Thereafter, the system was subjected under uniform and non-uniform strains to see their effects on spin polarization (P) and half-metallicity. The effect of spin orbit coupling is considered in the present study. Half-metallicity (and 100 % P) is only retained under uniform strains started from 0 to +4%, and dropped rapidly from 90% to 16% for the negative strains started from -1% to -6%. We find that the present system is much sensitive under tetragonal distortions as half-metallicity (and 100% P) is preserved only for the cubic case. The main reason for the loss of half-metallicity is due to the shift of the bands with respect to the Fermi level. We also discuss the influence of these results on spintronics devices.
Magnetic properties of a sigma-phase Fe60V40 intermetallic compound were studied by means of ac and dc magnetic susceptibility and magnetocaloric effect measurements. The compound is a soft magnet yet it was found to behave like a re-entrant spin-gla ss system. The magnetic ordering temperature was found to be T_C ca.170 K, while the spin-freezing temperature was ca.164 K. Its relative shift per decade of ac frequency was 0.002, a value smaller than that typical of canonical spin-glasses. Magnetic entropy change, DeltaS, in the vicinity of T_C was determined for magnetic field, H, ranging between 5 and 50 kOe. Analysis of DeltaS in terms of the power law yielded the critical exponent, n, vs. temperature with the minimum value of 0.75 at T_C, while from the analysis of a relative shift of the maximum value of DeltaS with the field a critical exponent Delta=1.7 was obtained. Based on scaling laws relationships values of other two exponents viz. betha=0.6 and gamma=1 were determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا