ﻻ يوجد ملخص باللغة العربية
The generalized gradient approximation (GGA) scheme in the first-principles calculations are used to study the effect of L21 and XA ordering on the phase stability, half-metallicity and magnetism of Co2FeAl (CFA) Heusler alloy. Various possible hypothetical structures: L21-I, L21-II, XA-I, and XA-II were prepared under the conventional L21 and inverse XA phases by altering the atomic occupancies at their Wyckoff sites. It is found that the XA-II phase of CFA is the most stable phase energetically among all the structures. The electronic structure calculations without U show the presence of half-metallic (HM) ground state only in L21-1 structure and the other structures are found to be metallic. However, the electronic structures of CFA are significantly modified in the presence of U, although the total magnetic moments per cell remained the same and consistent with the Slater-Pauling (SP) rule. The metallic ground states of CFA in L21-II and XA-II structures are converted into the half-metallic ground states in presence of U but remained the same (metallic) in XA-I structure. The results indicate that the electronic structures are not only dependent on the L21 and XA ordering of the atoms but also depend on the choice of U values. So experiments may only verify the superiority of GGA+U to GGA.
The physical properties of Fe2CoAl (FCA) Heusler alloy are systematically investigated using the first-principles calculations within generalized gradient approximation (GGA) and GGA+U. The influence of atomic ordering with respect to the Wyckoff sit
Density functional theory calculations within the generalized gradient approximation are employed to study the ground state of Co2FeAl. Various magnetic configurations are considered to find out its most stable phase. The ferromagnetic ground state o
A giant magnetocaloric effect across the ferromagnetic (FM) to paramagnetic (PM) phase transition was observed in chemically synthesized Co2FeAl Heusler alloy nanoparticles with a mean diameter of 16 nm. In our previous report, we have observed a sig
Co2FeAl (CFA) nanoparticles (NPs) of different sizes were synthesized by chemical route. The effect of the size of NPs upon the structure and magnetization compared to its bulk counterpart was investigated. The structure and composition were determin
The electronic structure and properties of PuO$_{2}$ and Pu$_{2}$O$_{3}$ have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The local density approximation (LDA)+$U$ and the generalized gradient approxi