ﻻ يوجد ملخص باللغة العربية
Let ${cal P}_n^c$ denote the set of all algebraic polynomials of degree at most $n$ with complex coefficients. Let $$D^+ := {z in mathbb{C}: |z| leq 1, , , Im(z) geq 0}$$ be the closed upper half-disk of the complex plane. For integers $0 leq k leq n$ let ${mathcal F}_{n,k}^c$ be the set of all polynomials $P in {mathcal P}_n^c$ having at least $n-k$ zeros in $D^+$. Let $$|f|_A := sup_{z in A}{|f(z)|}$$ for complex-valued functions defined on $A subset {Bbb C}$. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 left(frac{n}{k+1}right)^{1/2} leq inf_{P}{frac{|P^{prime}|_{[-1,1]}}{|P|_{[-1,1]}}} leq c_2 left(frac{n}{k+1}right)^{1/2}$$ for all integers $0 leq k leq n$, where the infimum is taken for all $0 otequiv P in {mathcal F}_{n,k}^c$ having at least one zero in $[-1,1]$. This is an essentially sharp reverse Markov-type inequality for the classes ${mathcal F}_{n,k}^c$ extending earlier results of Turan and Komarov from the case $k=0$ to the cases $0 leq k leq n$.
We use Turan type inequalities to give new non-asymptotic bounds on the extreme zeros of orthogonal polynomials in terms of the coefficients of their three term recurrence. Most of our results deal with symmetric polynomials satisfying the three term
Let ${mathcal P}_k$ denote the set of all algebraic polynomials of degree at most $k$ with real coefficients. Let ${mathcal P}_{n,k}$ be the set of all algebraic polynomials of degree at most $n+k$ having exactly $n+1$ zeros at $0$. Let $$|f|_A := su
In this paper we shall use the boundary Schwarz lemma of Osserman to obtain some generalizations and refinements of some well known results concerning the maximum modulus of the polynomials with restricted zeros due to Turan, Dubinin and others.
We establish some new Turans type inequalities for orthogonal polynomials defined by a three-term recurrence with monotonic coefficients. As a corollary we deduce asymptotic bounds on the extreme zeros of orthogonal polynomials with polynomially growing coefficients of the three-term recurrence.
We study reverse triangle inequalities for Riesz potentials and their connection with polarization. This work generalizes inequalities for sup norms of products of polynomials, and reverse triangle inequalities for logarithmic potentials. The main to