ﻻ يوجد ملخص باللغة العربية
We establish some new Turans type inequalities for orthogonal polynomials defined by a three-term recurrence with monotonic coefficients. As a corollary we deduce asymptotic bounds on the extreme zeros of orthogonal polynomials with polynomially growing coefficients of the three-term recurrence.
Let ${cal P}_n^c$ denote the set of all algebraic polynomials of degree at most $n$ with complex coefficients. Let $$D^+ := {z in mathbb{C}: |z| leq 1, , , Im(z) geq 0}$$ be the closed upper half-disk of the complex plane. For integers $0 leq k leq n
We use Turan type inequalities to give new non-asymptotic bounds on the extreme zeros of orthogonal polynomials in terms of the coefficients of their three term recurrence. Most of our results deal with symmetric polynomials satisfying the three term
We derive the P-finite recurrences for classes of sequences with ordinary generating function containing roots of polynomials. The focus is on establishing the D-finite differential equations such that the familiar steps of reducing their power series expansions apply.
For rational functions, we use simple but elegant techniques to strengthen generalizations of certain results which extend some widely known polynomial inequalities of Erdos-Lax and Turan to rational functions R. In return these reinforced results, i
The Tur{a}n inequalities and the higher order Tur{a}n inequalities arise in the study of Maclaurin coefficients of an entire function in the Laguerre-P{o}lya class. A real sequence ${a_{n}}$ is said to satisfy the Tur{a}n inequalities if for $ngeq 1$