ﻻ يوجد ملخص باللغة العربية
The dynamical properties of spherically symmetric galaxy models, where a Jaffe (1983) stellar density profile is embedded in a total mass density decreasing as $r^{-3}$ at large radii, are presented. The orbital structure of the stellar component is described by the Osipkov--Merritt anisotropy; the dark matter halo is isotropic, and a black hole is added at the center of the galaxy. First, the conditions for a nowhere negative and monotonically decreasing dark matter halo density profile are derived; this profile can be made asymptotically coincident with a NFW profile at the center and at large radii. Then the minimum value of the anisotropy radius for phase-space consistency is derived as a function of the galaxy parameters. The Jeans equations for the stellar component are solved analytically; the projected velocity dispersion at the center and at large radii is also obtained, for generic values of the anisotropy radius. Finally, analytical expressions for the terms entering the Virial Theorem are derived, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, built following an approach already adopted in our previous works, can be a useful starting point for a more advanced modeling of the dynamics of elliptical galaxies, and can be easily implemented in numerical simulations requiring a realistic dynamical model of a galaxy.
Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an $r^{-3}$ law at large radii. We extend these two families to their ellips
Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scale-lenghts and masses), are presented. The orbital structure of the s
Globally-constrained classical fields provide a unexplored framework for modeling quantum phenomena, including apparent particle-like behavior. By allowing controllable constraints on unknown past fields, these models are retrocausal but not retro-si
We build a spherical halo model for galaxies using a general scalar-tensor theory of gravity in its Newtonian limit. The scalar field is described by a time-independent Klein-Gordon equation with a source that is coupled to the standard Poisson equat
We present the first analysis of the stellar content of the structures and substructures identified in the peculiar star-forming galaxy NGC5474, based on Hubble Space Telescope resolved photometry from the LEGUS survey. NGC5474 is a satellite of the