ترغب بنشر مسار تعليمي؟ اضغط هنا

The strange case of the peculiar spiral galaxy NGC5474. New pieces of a galactic puzzle

97   0   0.0 ( 0 )
 نشر من قبل Michele Bellazzini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Bellazzini




اسأل ChatGPT حول البحث

We present the first analysis of the stellar content of the structures and substructures identified in the peculiar star-forming galaxy NGC5474, based on Hubble Space Telescope resolved photometry from the LEGUS survey. NGC5474 is a satellite of the giant spiral M101, and is known to have a prominent bulge that is significantly off-set from the kinematic center of the underlying HI and stellar disc. The youngest stars (age~ 100 Myr) trace a flocculent spiral pattern extending out to ~8 kpc from the center of the galaxy. On the other hand intermediate-age (age > 500 Myr) and old (age > 2 Gyr) stars dominate the off-centred bulge and a large substructure residing in the South Western part of the disc and not correlated with the spiral arms (SW over-density). The old age of the stars in the SW over-density suggests that this may be another signature of the dynamical interaction/s that have shaped this anomalous galaxy. We suggest that a fly by with M101, generally invoked as the origin of the anomalies, may not be sufficient to explain all the observations. A more local and more recent interaction may help to put all the pieces of this galactic puzzle together.



قيم البحث

اقرأ أيضاً

The nanoscience field often produces results more mystifying than any other discipline. It has been argued that changes in the plutonium dioxide (PuO2) particle size from bulk to nano can have a drastic effect on PuO2 properties. Here we report a ful l characterization of PuO2 nanoparticles (NPs) at the atomic level and probe their local and electronic structures by a variety of methods available at the synchrotron.
Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~4), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~30), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it is intermittently active as it moves in the dense environment in the cluster core. Using LOFAR, we can trace the relic plasma from that episode of activity out to greater distances from the core than ever before. Using the the WSRT, we detect HI in absorption against the center of the radio source. The absorption profile is relatively broad (FWHM of 288 km/s), similar to what is found in other clusters. Understanding the duty cycle of the radio emission as well as the triggering mechanism for starting (or restarting) the radio-loud activity can provide important constraints to quantify the impact of AGN feedback on galaxy evolution. The study of these mechanisms at low frequencies using morphological and spectral information promises to bring new important insights in this field.
NGC 6946, known as the Fireworks galaxy because of its high supernova rate and high star formation, is embedded in a very extended HI halo. Its northern spiral arm is well detached from the galactic main body. We found that this arm contains a large (~300 pc in size) Red Ellipse, named according to a strong contamination of the H-alpha emission line on its optical images. The ellipse is accompanied by a short parallel arc and a few others still smaller and less regular; a bright star cluster is seen inside these features. The complicated combination of arcs seems to be unique, it is only a bit similar to some SNRs. However, the long-slit spectral data obtained with the Russian 6-m telescope did not confirm the origin of the nebula as a result of a single SN outburst. The emission-line spectrum corresponds to the photoionization by young hot stars with a small contribution of shock ionization. The most likely explanation of the Red Ellipse is a superbbuble created by a collective feedback of massive stars in the star cluster located in the NE side of the Red Ellipse. However, the very regular elliptical shape of the nebulae seems strange.
We report the discovery of a new dwarf galaxy (NGC6503-d1) during the Subaru extended ultraviolet (XUV) disk survey. It is a likely companion of the spiral galaxy NGC6503. The resolved images, in B, V, R, i, and Halpha, show an irregular appearance d ue to bright stars with underlying, smooth and unresolved stellar emission. It is classified as the transition type (dIrr/dSph). Its structural properties are similar to those of the dwarfs in the Local Group, with a V absolute magnitude ~ -10.5, half-light radius ~400 pc, and central surface brightness ~25.2. Despite the low stellar surface brightness environment, one HII region was detected, though its Halpha luminosity is low, indicating an absence of any appreciable O-stars at the current epoch. The presence of multiple stellar populations is indicated by the color-magnitude diagram of ~300 bright resolved stars and the total colors of the dwarf, with the majority of its total stellar mass ~4x10^6 Msun in an old stellar population.
77 - Chong Li , Keping Qiu , Bo Hu 2021
Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we detect a giant HI filamentary structure in the sky region of 307$.!!^{circ}$7 $<$ $alpha$ $<$ 311$.!!^{circ}$0 and 40$.!!^{circ}$9 $<$ $delta$ $<$ 43$.!!^{circ}$4. The structu re has a velocity range of $-$170 km s$^{-1}$ to $-$130 km s$^{-1}$, and a mean velocity of $-$150 km s$^{-1}$, putting it to a Galactocentric distance of 22 kpc. The HI structure has a length of 1.1 kpc, which appears to be so far the furthest and largest giant filament in the Galaxy and we name it Cattail. Its mass is calculated to be 6.5 $times$ 10$^4$ M$_{odot}$ and the linear mass density is 60 M$_{odot}$ pc$^{-1}$. Its width is 207 pc, corresponding to an aspect ratio of 5:1. Cattail possesses a small velocity gradient (0.02 km s$^{-1}$ pc$^{-1}$) along its major axis. Together with the HI4PI data, we find that Cattail could have an even larger length, up to 5 kpc. We also identify another new elongated structure to be the extension into the Galactic first quadrant of the Outer Scutum-Centaurus (OSC) arm, and Cattail appears to be located far behind the OSC. The question about how such a huge filament is produced at the extreme Galactic location remains open. Alternatively, Cattail might be part of a new arm beyond the OSC, though it is puzzling that the structure does not fully follow the warp of the Galactic disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا