ﻻ يوجد ملخص باللغة العربية
We studied dissociation reactions of electron impact on water vapor for several fragment species at optical and near ultraviolet wavelengths (200 - 850 nm). The resulting spectrum is dominated by the Hydrogen Balmer series, by the OH (A $^2Sigma^+$ - X $^2Pi$) band, and by the emission of ionic H$_2$O$^+$ (A $^2$A$_1$ - X $^2$B$_1$) and OH$^+$ (A $^3Pi$ - X $^3Sigma^-$) band systems. Emission cross sections and reaction channel thresholds were determined for energies between 5 - 100 eV. We find that electron impact dissociation of H$_2$O results in an emission spectrum of the OH (A $^2Sigma^+$ - X $^2Pi$) band that is distinctly different than the emission spectra from other excitation mechanisms seen in planetary astronomy. We attribute the change to a strongly non-thermal population of rotational states seen in planetary astronomy. This difference can be utilized for remote probing of the contribution of different physical reactions in astrophysical environments.
Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence i
The treatment of the inelastic collisions with electrons and hydrogen atoms are the main source of uncertainties in non-Local Thermodynamic Equilibrium (LTE) spectral line computations. We report, in this research note, quantum mechanical data for 36
Understanding collisions between ultracold molecules is crucial for making stable molecular quantum gases and harnessing their rich internal degrees of freedom for quantum engineering. Transient complexes can strongly influence collisional physics, b
We study the visible and near-infrared (NIR) spectral properties of different ACO populations and compare them to the independently determined properties of comets. We select our ACOs sample based on published dynamical criteria and present our own
We demonstrate a versatile, rotational-state dependent trapping scheme for the ground and first excited rotational states of $^{23}$Na$^{40}$K molecules. Close to the rotational manifold of a narrow electronic transition, we determine tune-out freque