ترغب بنشر مسار تعليمي؟ اضغط هنا

Tune-out and magic wavelengths for ground-state $^{23}$Na$^{40}$K molecules

90   0   0.0 ( 0 )
 نشر من قبل Roman Bause
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a versatile, rotational-state dependent trapping scheme for the ground and first excited rotational states of $^{23}$Na$^{40}$K molecules. Close to the rotational manifold of a narrow electronic transition, we determine tune-out frequencies where the polarizability of one state vanishes while the other remains finite, and a magic frequency where both states experience equal polarizability. The proximity of these frequencies of only 10 GHz allows for dynamic switching between different trap configurations in a single experiment, while still maintaining sufficiently low scattering rates.



قيم البحث

اقرأ أيضاً

We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable $^{23}$Na$^{40}$K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rota tional transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, $J{=}1$, we observe collisional lifetimes of more than $3, rm s$, comparable to those in the rovibrational ground state, $J{=}0$. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements and quantum information processing.
We demonstrate the transfer of $^{23}$Na$^{40}$K molecules from a closed-channel dominated Feshbach-molecule state to the absolute ground state. The Feshbach molecules are initially created from a gas of sodium and potassium atoms via adiabatic rampi ng over a Feshbach resonance at 78.3$,$G. The molecules are then transferred to the absolute ground state using stimulated Raman adiabatic passage with an intermediate state in the spin-orbit-coupled complex $|c^3 Sigma^+, v=35, J=1 rangle sim |B^1Pi, v=12, J=1rangle$. Our measurements show that the pump transition dipole moment linearly increases with the closed-channel fraction. Thus, the pump-beam intensity can be two orders of magnitude lower than is necessary with open-channel dominated Feshbach molecules. We also demonstrate that the phase noise of the Raman lasers can be reduced by filter cavities, significantly improving the transfer efficiency.
Coherence, the stability of the relative phase between quantum states, lies at the heart of quantum mechanics. Applications such as precision measurement, interferometry, and quantum computation are enabled by physical systems that have quantum state s with robust coherence. With the creation of molecular ensembles at sub-$mu$K temperatures, diatomic molecules have become a novel system under full quantum control. Here, we report on the observation of stable coherence between a pair of nuclear spin states of ultracold fermionic NaK molecules in the singlet rovibrational ground state. Employing microwave fields, we perform Ramsey spectroscopy and observe coherence times on the scale of one second. This work opens the door for the exploration of single molecules as a versatile quantum memory. Switchable long-range interactions between dipolar molecules can further enable two-qubit gates, allowing quantum storage and processing in the same physical system. Within the observed coherence time, $10^4$ one- and two-qubit gate operations will be feasible.
112 - U. Dammalapati , K. Harada , 2016
The frequency dependent polarizabilities of the francium atom are calculated from the available data of energy levels and transition rates. Magic wavelengths for the state insensitive optical dipole trapping are identified from the calculated light s hifts of the $7s~^2S_{1/2}$, $7p~^2P_{1/2, 3/2}$ and $8s~^{2}S_{1/2}$ levels of the $7s~^{2}S_{1/2}-7p~^{2}P_{1/2,3/2}$ and $7s~^{2}S_{1/2}-8s~^{2}S_{1/2}$ transitions, respectively. Wavelengths in the ultraviolet, visible and near infrared region is identified that are suitable for cooling and trapping. Magic wavelengths between 600-700~nm and 700-1000~nm region, which are blue and red detuned with the $7s-7p$ and $7s-8s$ transitions are feasible to implement as lasers with sufficient power are available. In addition, we calculated the tune-out wavelengths where the ac polarizability of the ground $7s~^{2}S_{1/2}$ state in francium is zero. These results are beneficial as laser cooled and trapped francium has been in use for fundamental symmetry investigations like searches for an electron permanent electric dipole moment in an atom and for atomic parity non-conservation.
We report on the creation of ultracold 84Sr2 molecules in the electronic ground state. The molecules are formed from atom pairs on sites of an optical lattice using stimulated Raman adiabatic passage (STIRAP). We achieve a transfer efficiency of 30% and obtain 4x10^4 molecules with full control over the external and internal quantum state. STIRAP is performed near the narrow 1S0-3P1 intercombination transition, using a vibrational level of the 0u potential as intermediate state. In preparation of our molecule association scheme, we have determined the binding energies of the last vibrational levels of the 0u, 1u excited-state, and the 1Sigma_g^+ ground-state potentials. Our work overcomes the previous limitation of STIRAP schemes to systems with Feshbach resonances, thereby establishing a route that is applicable to many systems beyond bi-alkalis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا