ﻻ يوجد ملخص باللغة العربية
We study the heat current through two capacitively coupled quantum dots coupled in series with two conducting leads at different temperatures $T_L$ and $T_R$ in the spinless case (valid for a high applied magnetic field). Our results are also valid for the heat current through a single quantum dot with strongly ferromagnetic leads pointing in opposite directions (so that the electrons with given spin at the dot can jump only to one lead) or through a quantum dot with two degenerate levels with destructive quantum interference and high magnetic field. Although the charge current is always zero, the heat current is finite when the interdot Coulomb repulsion $U$ is taken into account due to many-body effects. We study the thermal conductance as a function of temperature and the dependence of the thermal current with the couplings to the leads, $T_L-T_R$, energy levels of the dots and $U$, including conditions for which an orbital Kondo regime takes place. When the energy levels of the dots are different, the device has rectifying properties for the thermal current. We find that the ratio between the thermal current resulting from a thermal bias $T_L>T_R$ and the one from $T_L<T_R$ is maximized for particular values of the energy levels, one above and the other below the Fermi level.
Dynamical processes induced by the external time-dependent fields can provide valuable insight into the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic heterostructure, consisting of the double quantu
We investigate the Fano-Kondo interplay in an Aharonov-Bohm ring with an embedded non-interacting quantum dot and a Coulomb interacting quantum dot. Using a slave-boson mean-field approximation we diagonalize the Hamiltonian via scattering matrix the
Currents in a few-electron parabolic quantum dot placed into a perpendicular magnetic field are considered. We show that traditional ways of investigating the Wigner crystallization by studying the charge density correlation function can be supplemen
We calculate the nonequilibrium conductance of a system of two capacitively coupled quantum dots, each one connected to its own pair of conducting leads. The system has been used recently to perform pseudospin spectroscopy by controlling independentl
We propose a nanoscale device consisting of a double quantum dot with strong intra- and inter- dot Coulomb repulsions. In this design, the current can only flow through the lower dot, but is triggered by the gate-controlled occupancy of the upper dot