ﻻ يوجد ملخص باللغة العربية
Very Long Baseline Atom Interferometry (VLBAI) corresponds to ground-based atomic matter-wave interferometry on large scales in space and time, letting the atomic wave functions interfere after free evolution times of several seconds or wave packet separation at the scale of meters. As inertial sensors, e.g., accelerometers, these devices take advantage of the quadratic scaling of the leading order phase shift with the free evolution time to enhance their sensitivity, giving rise to compelling experiments. With shot noise-limited instabilities better than $10^{-9}$ m/s$^2$ at 1 s at the horizon, VLBAI may compete with state-of-the-art superconducting gravimeters, while providing absolute instead of relative measurements. When operated with several atomic states, isotopes, or species simultaneously, tests of the universality of free fall at a level of parts in $10^{13}$ and beyond are in reach. Finally, the large spatial extent of the interferometer allows one to probe the limits of coherence at macroscopic scales as well as the interplay of quantum mechanics and gravity. We report on the status of the VLBAI facility, its key features, and future prospects in fundamental science.
We report on our progress in the construction of a continuous matter-wave interferometer for inertial sensing via the non-destructive observation of Bloch oscillations. At the present stage of the experiment, around $10^5$ strontium-88 atoms are cool
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multi-axis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a li
The MIGA project aims at demonstrating precision measurements of gravity with cold atom sensors in a large scale instrument and at studying the associated applications in geosciences and fundamental physics. The first stage of the project (2013-2018)
Point source atom interferometry (PSI) uses the velocity distribution in a cold atom cloud to simultaneously measure one axis of acceleration and two axes of rotation from the phase, orientation, and period of atomic interference fringe images. For p
High-precision laser spectroscopy of atomic hydrogen has led to an impressive accuracy in tests of bound-state quantum electrodynamics (QED). At the current level of accuracy many systematics have to be studied very carefully and only independent mea