ﻻ يوجد ملخص باللغة العربية
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multi-axis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a light-pulse atom interferometer for Rb-87 with 1.4 cm peak wavepacket separation and a duration of 2T = 2.3 seconds. The inferred acceleration sensitivity of each shot is 6.7 * 10^(-12) g, which improves on previous limits by more than two orders of magnitude. We also measure the Earths rotation rate with a precision of 200 nrad/s.
Point source atom interferometry is a promising approach for implementing robust, high-sensitivity, rotation sensors using cold atoms. However, its scale factor, i.e., the ratio between the interferometer signal and the actual rotation rate, depends
Point source atom interferometry (PSI) uses the velocity distribution in a cold atom cloud to simultaneously measure one axis of acceleration and two axes of rotation from the phase, orientation, and period of atomic interference fringe images. For p
We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are success
Atom interferometers offer excellent sensitivity to gravitational and inertial signals but have limited dynamic range. We introduce a scheme that improves on this trade-off by a factor of 50 using composite fringes, obtained from sets of measurements
A point source interferometer (PSI) is a device where atoms are split and recombined by applying a temporal sequence of Raman pulses during the expansion of a cloud of cold atoms behaving approximately as a point source. The PSI can work as a sensiti