ترغب بنشر مسار تعليمي؟ اضغط هنا

Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation

81   0   0.0 ( 0 )
 نشر من قبل Hugo Martin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove, in the framework of measure solutions, that the equal mito-sis equation present persistent asymptotic oscillations. To do so we adopt a duality approach, which is also well suited for proving the well-posedness when the division rate is unbounded. The main difficulty for characterizing the asymptotic behavior is to define the projection onto the subspace of periodic (rescaled) solutions. We achieve this by using the generalized relative entropy structure of the dual problem.



قيم البحث

اقرأ أيضاً

105 - Pierre Gabriel 2017
We prove the existence and uniqueness of measure solutions to the conservative renewal equation and analyze their long time behavior. The solutions are built by using a duality approach. This construction is well suited to apply the Doeblins argument which ensures the exponential relaxation of the solutions to the equilibrium.
We prove that any positive solution of the Yamabe equation on an asymptotically flat $n$-dimensional manifold of flatness order at least $frac{n-2}{2}$ and $nle 24$ must converge at infinity either to a fundamental solution of the Laplace operator on the Euclidean space or to a radial Fowler solution defined on the entire Euclidean space. The flatness order $frac{n-2}{2}$ is the minimal flatness order required to define ADM mass in general relativity; the dimension $24$ is the dividing dimension of the validity of compactness of solutions to the Yamabe problem. We also prove such alternatives for bounded solutions when $n>24$. We prove these results by establishing appropriate asymptotic behavior near an isolated singularity of solutions to the Yamabe equation when the metric has a flatness order of at least $frac{n-2}{2}$ at the singularity and $n<24$, also when $n>24$ and the solution grows no faster than the fundamental solution of the flat metric Laplacian at the singularity. These results extend earlier results of L. Caffarelli, B. Gidas and J. Spruck, also of N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen, when the metric is conformally flat, and work of C.C. Chen and C. S. Lin when the scalar curvature is a non-constant function with appropriate flatness at the singular point, also work of F. Marques when the metric is not necessarily conformally flat but smooth, and the dimension of the manifold is three, four, or five, as well as recent similar results by the second and third authors in dimension six.
158 - Hui Wei , Shuguan Ji 2021
We consider the periodic solutions of a semilinear variable coefficient wave equation arising from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. The variable coefficient characterizes the inhomogeneity of media and its presence usually leads to the destruction of the compactness of the inverse of linear wave operator with periodic-Dirichlet boundary conditions on its range. In the pioneering work of Barbu and Pavel (1997), it gives the existence and regularity of periodic solution for Lipschitz, nonresonant and monotone nonlinearity under the assumption $eta_u>0$ (see Sect. 2 for its definition) on the coefficient $u(x)$ and leaves the case $eta_u=0$ as an open problem. In this paper, by developing the invariant subspace method and using the complete reduction technique and Leray-Schauder theory, we obtain the existence of periodic solutions for such a problem when the nonlinear term satisfies the asymptotic nonresonance conditions. Our result not only does not need any requirements on the coefficient except for the natural positivity assumption (i.e., $u(x)>0$), but also does not need the monotonicity assumption on the nonlinearity. In particular, when the nonlinear term is an odd function and satisfies the global nonresonance conditions, there is only one (trivial) solution to this problem on the invariant subspace.
An explicit lifespan estimate is presented for the derivative Schrodinger equations with periodic boundary condition.
136 - Thomas Eiter 2020
The asymptotic behavior of weak time-periodic solutions to the Navier-Stokes equations with a drift term in the three-dimensional whole space is investigated. The velocity field is decomposed into a time-independent and a remaining part, and separate asymptotic expansions are derived for both parts and their gradients. One observes that the behavior at spatial infinity is determined by the corresponding Oseen fundamental solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا