ترغب بنشر مسار تعليمي؟ اضغط هنا

On the spatially asymptotic structure of time-periodic solutions to the Navier-Stokes equations

137   0   0.0 ( 0 )
 نشر من قبل Thomas Eiter
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Thomas Eiter




اسأل ChatGPT حول البحث

The asymptotic behavior of weak time-periodic solutions to the Navier-Stokes equations with a drift term in the three-dimensional whole space is investigated. The velocity field is decomposed into a time-independent and a remaining part, and separate asymptotic expansions are derived for both parts and their gradients. One observes that the behavior at spatial infinity is determined by the corresponding Oseen fundamental solutions.



قيم البحث

اقرأ أيضاً

121 - Zhen Lei , Xiao Ren , Qi S Zhang 2019
An old problem asks whether bounded mild ancient solutions of the 3 dimensional Navier-Stokes equations are constants. While the full 3 dimensional problem seems out of reach, in the works cite{KNSS, SS09}, the authors expressed their belief that the following conjecture should be true. For incompressible axially-symmetric Navier-Stokes equations (ASNS) in three dimensions: textit{bounded mild ancient solutions are constant}. Understanding of such solutions could play useful roles in the study of global regularity of solutions to the ASNS. In this article, we essentially prove this conjecture in the special case that $u$ is periodic in $z$. To the best of our knowledge, this seems to be the first result on this conjecture without unverified decay condition. It also shows that periodic solutions are not models of possible singularity or high velocity region. Some partial result in the non-periodic case is also given.
In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove t his problem has at least one helical invariant solution.
66 - Giovanni Leoni , Ian Tice 2019
In this paper we study a finite-depth layer of viscous incompressible fluid in dimension $n ge 2$, modeled by the Navier-Stokes equations. The fluid is assumed to be bounded below by a flat rigid surface and above by a free, moving interface. A unifo rm gravitational field acts perpendicularly to the flat surface, and we consider the cases with and without surface tension acting on the free interface. In addition to these gravity-capillary effects, we allow for a second force field in the bulk and an external stress tensor on the free interface, both of which are posited to be in traveling wave form, i.e. time-independent when viewed in a coordinate system moving at a constant velocity parallel to the rigid lower boundary. We prove that, with surface tension in dimension $n ge 2$ and without surface tension in dimension $n=2$, for every nontrivial traveling velocity there exists a nonempty open set of force and stress data that give rise to traveling wave solutions. While the existence of inviscid traveling waves is well known, to the best of our knowledge this is the first construction of viscous traveling wave solutions. Our proof involves a number of novel analytic ingredients, including: the study of an over-determined Stokes problem and its under-determined adjoint, a delicate asymptotic development of the symbol for a normal-stress to normal-Dirichlet map defined via the Stokes operator, a new scale of specialized anisotropic Sobolev spaces, and the study of a pseudodifferential operator that synthesizes the various operators acting on the free surface functions.
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
304 - Jean-Yves Chemin 2008
In three previous papers by the two first authors, classes of initial data to the three dimensional, incompressible Navier-Stokes equations were presented, generating a global smooth solution although the norm of the initial data may be chosen arbitr arily large. The main feature of the initial data considered in the last paper is that it varies slowly in one direction, though in some sense it is ``well prepared (its norm is large but does not depend on the slow parameter). The aim of this article is to generalize the setting of that last paper to an ``ill prepared situation (the norm blows up as the small parameter goes to zero).The proof uses the special structure of the nonlinear term of the equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا