ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago

133   0   0.0 ( 0 )
 نشر من قبل Miroslava Dessauges-Zavadsky Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cold molecular gas in contemporary galaxies is structured in discrete cloud complexes. These giant molecular clouds (GMCs), with $10^4$-$10^7$ solar masses and radii of 5-100 parsecs, are the seeds of star formation. Highlighting the molecular gas structure at such small scales in distant galaxies is observationally challenging. Only a handful of molecular clouds were reported in two extreme submillimetre galaxies at high redshift. Here we search for GMCs in a typical Milky Way progenitor at z = 1.036. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we mapped the CO(4-3) emission of this gravitationally lensed galaxy at high resolution, reading down to 30 parsecs, which is comparable to the resolution of CO observations of nearby galaxies. We identify 17 molecular clouds, characterized by masses, surface densities and supersonic turbulence all of which are 10-100 times higher than present-day analogues. These properties question the universality of GMCs and suggest that GMCs inherit their properties from ambient interstellar medium. The measured cloud gas masses are similar to the masses of stellar clumps seen in the galaxy in comparable numbers. This corroborates the formation of molecular clouds by fragmentation of distant turbulent galactic gas disks, which then turn into stellar clumps ubiquitously observed in galaxies at cosmic noon.



قيم البحث

اقرأ أيضاً

Submillimeter bright galaxies in the early Universe are vigorously forming stars at ~1000 times higher rate than the Milky Way. A large fraction of stars is formed in the central 1 kiloparsec region, that is comparable in size to massive, quiescent g alaxies found at the peak of the cosmic star formation history, and eventually the core of giant elliptical galaxies in the present-day Universe. However, the physical and kinematic properties inside a compact starburst core are poorly understood because dissecting it requires angular resolution even higher than the Hubble Space Telescope can offer. Here we report 550 parsec-resolution observations of gas and dust in the brightest unlensed submillimeter galaxy at z=4.3. We map out for the first time the spatial and kinematic structure of molecular gas inside the heavily dust-obscured core. The gas distribution is clumpy while the underlying disk is rotation-supported. Exploiting the high-quality map of molecular gas mass surface density, we find a strong evidence that the starburst disk is gravitationally unstable, implying that the self-gravity of gas overcomes the differential rotation and the internal pressure by stellar radiation feedback. The observed molecular gas would be consumed by star formation in a timescale of 100 million years, that is comparable to those in merging starburst galaxies. Our results suggest that the most extreme starburst in the early Universe originates from efficient star formation due to a gravitational instability in the central 2 kpc region.
192 - Casey Papovich 2016
The gas accretion and star-formation histories of galaxies like the Milky Way remain an outstanding problem in astrophysics. Observations show that 8 billion years ago, the progenitors to Milky Way-mass galaxies were forming stars 30 times faster tha n today and predicted to be rich in molecular gas, in contrast with low present-day gas fractions ($<$10%). Here we show detections of molecular gas from the CO(J=3-2) emission (rest-frame 345.8 GHz) in galaxies at redshifts z=1.2-1.3, selected to have the stellar mass and star-formation rate of the progenitors of todays Milky Way-mass galaxies. The CO emission reveals large molecular gas masses, comparable to or exceeding the galaxy stellar masses, and implying most of the baryons are in cold gas, not stars. The galaxies total luminosities from star formation and CO luminosities yield long gas-consumption timescales. Compared to local spiral galaxies, the star-formation efficiency, estimated from the ratio of total IR luminosity to CO emission,} has remained nearly constant since redshift z=1.2, despite the order of magnitude decrease in gas fraction, consistent with results for other galaxies at this epoch. Therefore the physical processes that determine the rate at which gas cools to form stars in distant galaxies appear to be similar to that in local galaxies.
In cold dark matter cosmology, the baryonic components of galaxies are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark matter halo. In the local Univers e, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius. Comparison between the dynamical mass and the sum of stellar and cold gas mass at the peak epoch of galaxy formation, inferred from ancillary data, suggest high baryon factions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (stellar initial mass function, calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of two main factors: first, a large fraction of the massive, high-redshift galaxy population was strongly baryon dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early Universe efficiently condensed at the centres of dark matter halos when gas fractions were high, and dark matter was less concentrated. [Abridged]
We present millimetre dust emission measurements of two Lyman Break Galaxies at z~3 and construct for the first time fully sampled infrared spectral energy distributions (SEDs), from mid-IR to the Rayleigh-Jeans tail, of individually detected, unlens ed, UV-selected, main sequence (MS) galaxies at $z=3$. The SED modelling of the two sources confirms previous findings, based on stacked ensembles, of an increasing mean radiation field <U> with redshift, consistent with a rapidly decreasing gas metallicity in z > 2 galaxies. Complementing our study with CO[3-2] emission line observations, we measure the molecular gas mass (M_H2) reservoir of the systems using three independent approaches: 1) CO line observations, 2) the dust to gas mass ratio vs metallicity relation and 3) a single band, dust emission flux on the Rayleigh-Jeans side of the SED. All techniques return consistent M_H2 estimates within a factor of ~2 or less, yielding gas depletion time-scales (tau_dep ~ 0.35 Gyrs) and gas-to-stellar mass ratios (M_H2/M* ~ 0.5-1) for our z~3 massive MS galaxies. The overall properties of our galaxies are consistent with trends and relations established at lower redshifts, extending the apparent uniformity of star-forming galaxies over the last 11.5 billion years.
According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density f ield. Observing these structures during their period of active growth and assembly - the first few hundred million years of the Universe - is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 Myr after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging reveals this source to be a pair of extremely massive star-forming galaxies. The larger of these galaxies is forming stars at a rate of 2900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of just 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbor and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 400 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا