ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust and Gas in Star Forming Galaxies at z~3 - Extending Galaxy Uniformity to 11.5 Billion Years

103   0   0.0 ( 0 )
 نشر من قبل Georgios Magdis E
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present millimetre dust emission measurements of two Lyman Break Galaxies at z~3 and construct for the first time fully sampled infrared spectral energy distributions (SEDs), from mid-IR to the Rayleigh-Jeans tail, of individually detected, unlensed, UV-selected, main sequence (MS) galaxies at $z=3$. The SED modelling of the two sources confirms previous findings, based on stacked ensembles, of an increasing mean radiation field <U> with redshift, consistent with a rapidly decreasing gas metallicity in z > 2 galaxies. Complementing our study with CO[3-2] emission line observations, we measure the molecular gas mass (M_H2) reservoir of the systems using three independent approaches: 1) CO line observations, 2) the dust to gas mass ratio vs metallicity relation and 3) a single band, dust emission flux on the Rayleigh-Jeans side of the SED. All techniques return consistent M_H2 estimates within a factor of ~2 or less, yielding gas depletion time-scales (tau_dep ~ 0.35 Gyrs) and gas-to-stellar mass ratios (M_H2/M* ~ 0.5-1) for our z~3 massive MS galaxies. The overall properties of our galaxies are consistent with trends and relations established at lower redshifts, extending the apparent uniformity of star-forming galaxies over the last 11.5 billion years.



قيم البحث

اقرأ أيضاً

We present the results of a study investigating the dust attenuation law at $zsimeq 5$, based on synthetic spectral energy distributions (SEDs) calculated for a sample of N=498 galaxies drawn from the First Billion Years (FiBY) simulation project. Th e simulated galaxies at $zsimeq 5$, which have M$_{1500} leq -18.0$ and $7.5 leq rm{log(M/M}_{odot}rm{)} leq 10.2$, display a mass-dependent $alpha$-enhancement, with a median value of $[alpha/rm{Fe}]_{z=5}~simeq~4~times~[alpha/rm{Fe}]_{Z_{odot}}$. The median Fe/H ratio of the simulated galaxies is $0.14pm0.05$ which, even including the effects of nebular continuum, produces steep intrinsic UV continuum slopes; $langle beta_{i} rangle = -2.4 pm 0.05$. Using a set of simple dust attenuation models, in which the wavelength-dependent attenuation is assumed to be of the form $A(lambda) propto lambda^{n}$, we explore the parameter values which best reproduce the observed $z=5$ luminosity function (LF) and colour-magnitude relation (CMR). We find that a simple model in which the absolute UV attenuation is a linearly increasing function of log stellar mass, and the dust attenuation slope ($n$) is within the range $-0.7 leq n leq-0.3$, can successfully reproduce the LF and CMR over a wide range of stellar population synthesis model (SPS) assumptions. This range of attenuation curves is consistent with a power-law fit to the Calzetti attenuation law in the UV ($n=-0.55$), and other similarly `grey star-forming galaxy attenuation curves recently derived at $zsimeq2$. In contrast, attenuation curves as steep as the Small Magellanic Cloud (SMC) extinction curve ($n=-1.24$) are formally ruled out. Finally, we show that our models are consistent with recent 1.3mm ALMA observations of the Hubble Ultra Deep Field (HUDF), and predict the form of the $zsimeq5$ IRX$-beta$ relation.
While dust is a major player in galaxy evolution, its relationship with gas and stellar radiation in the early universe is still not well understood. We combine 3D-HST emission line fluxes with far-UV through far-IR photometry in a sample of 669 emis sion-line galaxies (ELGs) between 1.2 < z < 1.9 and use the MCSED spectral energy distribution fitting code to constrain the galaxies physical parameters, such as their star formation rates (SFRs), stellar masses, and dust masses. We find that the assumption of energy balance between dust attenuation and emission is likely unreasonable in many cases. We highlight a relationship between the mass-specific star formation rate (sSFR), stellar mass, and dust mass, although its exact form is still unclear. Finally, a stacking of H$alpha$ and H$beta$ fluxes shows that nebular attenuation increases with stellar mass and SFR for IR-bright ELGs.
We present the results of a new study of dust attenuation at redshifts $3 < z < 4$ based on a sample of $236$ star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range $8.2 leq$ log$(M_{star}/M_{odot}) leq 10.6$ probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at $zsimeq3.5$ is similar in shape to the commonly-adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of $R_{V}=4.18pm0.29$. We show that the optical attenuation ($A_V$) versus stellar mass ($M_{star}$) relation predicted using our method is consistent with recent ALMA observations of galaxies at $2<z<3$ in the emph{Hubble} emph{Ultra} emph{Deep} emph{Field} (HUDF), as well as empirical $A_V - M_{star}$ relations predicted by a Calzetti-like law. Our results, combined with other literature data, suggest that the $A_V - M_{star}$ relation does not evolve over the redshift range $0<z<5$, at least for galaxies with log$(M_{star}/M_{odot}) gtrsim 9.5$. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at log$(M_{star}/M_{odot}) lesssim 9.0$.
Dust attenuation in galaxies has been extensively studied nearby, however, there are still many unknowns regarding attenuation in distant galaxies. We contribute to this effort using observations of star-forming galaxies in the redshift range z = 0.0 5-0.15 from the DYNAMO survey. Highly star-forming DYNAMO galaxies share many similar attributes to clumpy, star-forming galaxies at high redshift. Considering integrated Sloan Digital Sky Survey observations, trends between attenuation and other galaxy properties for DYNAMO galaxies are well matched to star-forming galaxies at high redshift. Integrated gas attenuations of DYNAMO galaxies are 0.2-2.0 mags in the V-band, and the ratio of stellar E(B-V) and gas E(B-V) is 0.78-0.08 (compared to 0.44 at low redshift). Four highly star-forming DYNAMO galaxies were observed at H-alpha using the Hubble Space Telescope and at Pa-alpha using integral field spectroscopy at Keck. The latter achieve similar resolution (~0.8-1 kpc) to our HST imaging using adaptive optics, providing resolved observations of gas attenuations of these galaxies on sub-kpc scales. We find < 1.0 mag of variation in attenuation (at H-alpha) from clump to clump, with no evidence of highly attenuated star formation. Attenuations are in the range 0.3-2.2 mags in the V band, consistent with attenuations of low redshift star-forming galaxies. The small spatial variation on attenuation suggests that a majority of the star-formation activity in these four galaxies occurs in relatively unobscured regions and, thus, star-formation is well characterised by our H-alpha observations.
We study the molecular gas content of 24 star-forming galaxies at $z=3-4$, with a median stellar mass of $10^{9.1}$ M$_{odot}$, from the MUSE Hubble Ultra Deep Field (HUDF) Survey. Selected by their Lyman-alpha-emission and H-band magnitude, the gala xies show an average EW $approx 20$ angstrom, below the typical selection threshold for Lyman Alpha Emitters (EW $> 25$ angstrom), and a rest-frame UV spectrum similar to Lyman Break Galaxies. We use rest-frame optical spectroscopy from KMOS and MOSFIRE, and the UV features observed with MUSE, to determine the systemic redshifts, which are offset from Lyman alpha by 346 km s$^{-1}$, with a 100 to 600 km s$^{-1}$ range. Stacking CO(4-3) and [CI](1-0) (and higher-$J$ CO lines) from the ALMA Spectroscopic Survey of the HUDF (ASPECS), we determine $3sigma$ upper limits on the line luminosities of $4.0times10^{8}$ K km s$^{-1}$pc$^{2}$ and $5.6times10^{8}$ K km s$^{-1}$pc$^{2}$, respectively (for a 300 km s$^{-1}$ linewidth). Stacking the 1.2 mm and 3 mm dust continuum flux densities, we find a $3sigma$ upper limits of 9 $mu$Jy and $1.2$ $mu$Jy, respectively. The inferred gas fractions, under the assumption of a Galactic CO-to-H$_{2}$ conversion factor and gas-to-dust ratio, are in tension with previously determined scaling relations. This implies a substantially higher $alpha_{rm CO} ge 10$ and $delta_{rm GDR} ge 1200$, consistent with the sub-solar metallicity estimated for these galaxies ($12 + log(O/H) approx 7.8 pm 0.2$). The low metallicity of $z ge 3$ star-forming galaxies may thus make it very challenging to unveil their cold gas through CO or dust emission, warranting further exploration of alternative tracers, such as [CII].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا