ﻻ يوجد ملخص باللغة العربية
Faltering growth among children is a nutritional problem prevalent in low to medium income countries; it is generally defined as a slower rate of growth compared to a reference healthy population of the same age and gender. As faltering is closely associated with reduced physical, intellectual and economic productivity potential, it is important to identify faltered children and be able to characterise different growth patterns so that targeted treatments can be designed and administered. We introduce a multiclass classification model for growth trajectory that flexibly extends a current classification approach called the broken stick model, which is a piecewise linear model with breaks at fixed knot locations. Heterogeneity in growth patterns among children is captured using mixture distributed random effects, whereby the mixture components determine the classification of children into subgroups. The mixture distribution is modelled using a Dirichlet process prior, which avoids the need to choose the true number of mixture components, and allows this to be driven by the complexity of the data. Because children have individual differences in the onset of growth stages, we introduce child-specific random change points. Simulation results show that the random change point model outperforms the broken stick model because it has fewer restrictions on knot locations. We illustrate our model on a longitudinal birth cohort from the Healthy Birth, Growth and Development knowledge integration project funded by the Bill and Melinda Gates Foundation. Analysis reveals 9 subgroups of children within the population which exhibit varying faltering trends between birth and age one.
We consider inference from non-random samples in data-rich settings where high-dimensional auxiliary information is available both in the sample and the target population, with survey inference being a special case. We propose a regularized predictio
We present an approach to estimate distance-dependent heterogeneous associations between point-referenced exposures to built environment characteristics and health outcomes. By estimating associations that depend non-linearly on distance between subj
We call $i$ a fixed point of a given sequence if the value of that sequence at the $i$-th position coincides with $i$. Here, we enumerate fixed points in the class of restricted growth sequences. The counting process is conducted by calculation of ge
Two-sample and independence tests with the kernel-based MMD and HSIC have shown remarkable results on i.i.d. data and stationary random processes. However, these statistics are not directly applicable to non-stationary random processes, a prevalent f
The random coefficients model $Y_i={beta_0}_i+{beta_1}_i {X_1}_i+{beta_2}_i {X_2}_i+ldots+{beta_d}_i {X_d}_i$, with $mathbf{X}_i$, $Y_i$, $mathbf{beta}_i$ i.i.d, and $mathbf{beta}_i$ independent of $X_i$ is often used to capture unobserved heterogene