ﻻ يوجد ملخص باللغة العربية
This paper considers one-mode open quantum harmonic oscillators with a pair of conjugate position and momentum variables driven by vacuum bosonic fields according to a linear quantum stochastic differential equation. Such systems model cavity resonators in quantum optical experiments. Assuming that the quadratic Hamiltonian of the oscillator is specified by a positive definite energy matrix, we consider a modified version of the quantum Karhunen-Loeve expansion of the system variables proposed recently. The expansion employs eigenvalues and eigenfunctions of the two-point commutator kernel for linearly transformed system variables. We take advantage of the specific structure of this eigenbasis in the one-mode case (including its connection with the classical Ornstein-Uhlenbeck process). These results are applied to computing quadratic-exponential cost functionals which provide robust performance criteria for risk-sensitive control of open quantum systems.
In this paper, we study the recursion of measurement outcomes for open quantum networks under sequential measurements. Open quantum networks are networked quantum subsystems (e.g., qubits) with the state evolutions described by a continuous Lindblad
We present a conjecture regarding the expectation of the maxima of $L^2$ norms of sub-vectors of a Gaussian vector; this has application to nonlinear reconstruction.
We explore the utility of Karhunen Loeve (KL) analysis in solving practical problems in the analysis of gravitational shear surveys. Shear catalogs from large-field weak lensing surveys will be subject to many systematic limitations, notably incomple
Normally, the half-harmonic oscillator is active when $x>0$ and absent when $x<0$. From a canonical quantization perspective, this leads to odd eigenfunctions being present while even eigenfunctions are absent. In that case, only the usual odd eigenf
Staggered quantum walks on graphs are based on the concept of graph tessellation and generalize some well-known discrete-time quantum walk models. In this work, we address the class of 2-tessellable quantum walks with the goal of obtaining an eigenba