ترغب بنشر مسار تعليمي؟ اضغط هنا

A Karhunen-Loeve expansion for one-mode open quantum harmonic oscillators using the eigenbasis of the two-point commutator kernel

64   0   0.0 ( 0 )
 نشر من قبل Igor Vladimirov
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers one-mode open quantum harmonic oscillators with a pair of conjugate position and momentum variables driven by vacuum bosonic fields according to a linear quantum stochastic differential equation. Such systems model cavity resonators in quantum optical experiments. Assuming that the quadratic Hamiltonian of the oscillator is specified by a positive definite energy matrix, we consider a modified version of the quantum Karhunen-Loeve expansion of the system variables proposed recently. The expansion employs eigenvalues and eigenfunctions of the two-point commutator kernel for linearly transformed system variables. We take advantage of the specific structure of this eigenbasis in the one-mode case (including its connection with the classical Ornstein-Uhlenbeck process). These results are applied to computing quadratic-exponential cost functionals which provide robust performance criteria for risk-sensitive control of open quantum systems.



قيم البحث

اقرأ أيضاً

In this paper, we study the recursion of measurement outcomes for open quantum networks under sequential measurements. Open quantum networks are networked quantum subsystems (e.g., qubits) with the state evolutions described by a continuous Lindblad master equation. When measurements are performed sequentially along such continuous dynamics, the quantum network states undergo random jumps and the corresponding measurement outcomes can be described by a vector of probabilistic Boolean variables. The induced recursion of the Boolean vectors forms a probabilistic Boolean network. First of all, we show that the state transition of the induced Boolean networks can be explicitly represented through realification of the master equation. Next, when the open quantum dynamics is relaxing in the sense that it possesses a unique equilibrium as a global attractor, structural properties including absorbing states, reducibility, and periodicity for the induced Boolean network are direct consequences of the relaxing property. Particularly, we show that generically, relaxing quantum dynamics leads to irreducible and aperiodic chains for the measurement outcomes. Finally, we show that for quantum consensus networks as a type of non-relaxing open quantum network dynamics, the communication classes of the measurement-induced Boolean networks are encoded in the quantum Laplacian of the underlying interaction graph.
We present a conjecture regarding the expectation of the maxima of $L^2$ norms of sub-vectors of a Gaussian vector; this has application to nonlinear reconstruction.
We explore the utility of Karhunen Loeve (KL) analysis in solving practical problems in the analysis of gravitational shear surveys. Shear catalogs from large-field weak lensing surveys will be subject to many systematic limitations, notably incomple te coverage and pixel-level masking due to foreground sources. We develop a method to use two dimensional KL eigenmodes of shear to interpolate noisy shear measurements across masked regions. We explore the results of this method with simulated shear catalogs, using statistics of high-convergence regions in the resulting map. We find that the KL procedure not only minimizes the bias due to masked regions in the field, it also reduces spurious peak counts from shape noise by a factor of ~ 3 in the cosmologically sensitive regime. This indicates that KL reconstructions of masked shear are not only useful for creating robust convergence maps from masked shear catalogs, but also offer promise of improved parameter constraints within studies of shear peak statistics.
Normally, the half-harmonic oscillator is active when $x>0$ and absent when $x<0$. From a canonical quantization perspective, this leads to odd eigenfunctions being present while even eigenfunctions are absent. In that case, only the usual odd eigenf unctions will appear if the wall slides to negative infinity. However, if an affine quantization is used, sliding the wall away shows that all the odd and even eigenfunctions are encountered, exactly like any full-harmonic oscillator. We provide numerical support for this.
Staggered quantum walks on graphs are based on the concept of graph tessellation and generalize some well-known discrete-time quantum walk models. In this work, we address the class of 2-tessellable quantum walks with the goal of obtaining an eigenba sis of the evolution operator. By interpreting the evolution operator as a quantum Markov chain on an underlying multigraph, we define the concept of quantum detailed balance, which helps to obtain the eigenbasis. A subset of the eigenvectors is obtained from the eigenvectors of the double discriminant matrix of the quantum Markov chain. To obtain the remaining eigenvectors, we have to use the quantum detailed balance conditions. If the quantum Markov chain has a quantum detailed balance, there is an eigenvector for each fundamental cycle of the underlying multigraph. If the quantum Markov chain does not have a quantum detailed balance, we have to use two fundamental cycles linked by a path in order to find the remaining eigenvectors. We exemplify the process of obtaining the eigenbasis of the evolution operator using the kagome lattice (the line graph of the hexagonal lattice), which has symmetry properties that help in the calculation process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا